MATH205, Fall 2021, Homework 3, Due Wednesday, Oct 20, 3:30 pm

Instructions

You can submit the homework either in paper or online

- Online: Take pictures of the written (theory) part; send them (along with the simulation part) to me on Slack or through Canvas before the lecture on Wednesday
- Paper: Print out the result of the simulation part and staple it with the written work; hand it in at the beginning of the lecture on Wednesday

1 Theory

1. Problem 1: Let X be a discrete random variable with the following probability mass function

$$
p(x)=\left\{\begin{array}{l}
\frac{x+1}{10}, \text { for } x=0,1,2,3 \\
0 \text { otherwise }
\end{array}\right.
$$

- Compute $E[X]$ and $\operatorname{Var}(X)$
- Compute $E\left[2^{X}\right]$

2. Problem 2: Let X be a continuous random variable with the following probability density function

$$
f(x)=\left\{\begin{array}{l}
3 x^{2}, \text { for } x \in[0,1] \\
0 \text { otherwise }
\end{array}\right.
$$

- Compute $E[X]$ and $\operatorname{Var}(X)$
- Compute $P[0.25 \leq X \leq 0.75]$

3. Problem 3: Assume that the joint probability of X (receive values 1, 2) and Y (receives values $1,2,3$) is represented by the following table

X	1	2	3
1	0.14	0.42	0.06
2	0.06	0.28	0.04

- Are X and Y independent?
- Compute $E(X+Y)$ and $E(X Y)$.

2 Simulations

- Problem 4: Consider the probability distribution described in Problem 1.
(a) Simulate a dataset of $n=500$ random draws from the distribution. Compute the mean of the dataset.
(b) Produce a bar plot of the dataset
(c) Repeat part (a) with sample sizes

$$
n=500 ; 1000 ; 2000 ; 5000 ; 10000 ; 20000 ; 50000 ; 100000 .
$$

For each case, compute the difference between the mean of the dataset and $E(X)$ (computed in Problem 1). Produce a plot of the difference vs. the sample size n.

- Problem 5: Consider the probability distribution described in Problem 2.
(a) Simulate a dataset of $n=500$ random draws from the distribution. Compute the mean of the dataset.
(b) Produce a histogram of the sample
(c) Repeat part (a) 5000 times. Use a vector v to save the mean of the dataset in the $i^{t h}$ replicate by $v[i]$. Produce a histogram of v.

Attach the scripts containing the commands and screenshots of the results of the scripts.

