MATH 205: Statistical methods

Lab 7: Confidence intervals

A good prediction comes with a range

Confidence

- Assume that you have been using an AI to predict the stock price of Microsoft every day in the last few years
- The prediction comes as a range, e.g., [295, 305]
- The algorithm, on average, is correct 95 out of 100 days
- Then we say that a prediction from this AI has a confidence of 95\%

Confidence interval

Suppose we are studying a distribution with with mean μ (unknown) and standard deviation $\sigma=0.85$. A random sample of $n=50$ specimens is selected with sample average \bar{X}. We know that \bar{X} can be used to approximate μ.

Question: Find a general rule of c (that depends on \bar{X}) such that

$$
P[\bar{X}-c \leq \mu \leq \bar{X}+c]=0.95
$$

\rightarrow The interval $[\bar{X}-c, \bar{X}+c]$ is a confidence interval with confidence level 95%.

Theorem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with mean μ and variance σ^{2}. Then, in the limit when $n \rightarrow \infty$, the standardized version of \bar{X} have the standard normal distribution

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq z\right)=\mathbb{P}[Z \leq z]=\Phi(z)
$$

Rule of Thumb:
If $n>30$, the Central Limit Theorem can be used for computation.

Confidence interval

We know that

$$
P[\bar{X}-c \leq \mu \leq \bar{X}+c]=0.95
$$

is equivalent to

$$
P[\bar{X}-\mu-c \leq 0 \leq \bar{X}-\mu+c]=0.95
$$

is equivalent to

$$
P\left[\frac{-c}{\sqrt{n}} \leq \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq \frac{c}{\sqrt{n}}\right]=0.95
$$

Confidence interval

- We have

$$
P\left[-1.96 \leq \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq 1.96\right]=0.95
$$

- Rearranging the inequalities gave

$$
P\left[\bar{X}-1.96 \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X}+1.96 \frac{\sigma}{\sqrt{n}}\right]=0.95
$$

- This means that if you use

$$
\left[\bar{X}-1.96 \frac{\sigma}{\sqrt{n}}, \bar{X}+1.96 \frac{\sigma}{\sqrt{n}}\right]
$$

as a range to estimate μ, then you are correct 95% of the time.

Normal distribution with know σ

- Using

$$
\left[\bar{X}-1.96 \frac{\sigma}{\sqrt{n}}, \bar{X}+1.96 \frac{\sigma}{\sqrt{n}}\right]
$$

as a range to estimate μ is correct 95% of the time.

- If after observing $X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}$, we compute the observed sample mean \bar{x}. Then

$$
\left(\bar{x}-1.96 \frac{\sigma}{\sqrt{n}}, \bar{x}+1.96 \frac{\sigma}{\sqrt{n}}\right)
$$

is a 95% confidence interval of μ

NOTATION
z_{α} will denote the value on the measurement axis for which α of the area under the z curve lies to the right of z_{α}. (See Figure 4.19.)

For example, $z_{.10}$ captures upper-tail area .10 and $z_{.01}$ captures upper-tail area 01 .

Figure $4.19 z_{\alpha}$ notation illustrated
Since α of the area under the standard normal curve lies to the right of $z_{\alpha}, 1-\alpha$ of the area lies to the left of z_{α}. Thus z_{α} is the $100(1-\alpha)$ th percentile of the standard normal distribution. By symmetry the area under the standard normal curve to the left of $-z_{\alpha}$ is also α. The z_{α} 's are usually referred to as z critical values. Table 4.1 lists the most useful standard normal percentiles and z_{α} values.

$100(1-\alpha) \%$ confidence interval

Figure 8.4 $P\left(-z_{\alpha / 2} \leq Z \leq z_{\alpha / 2}\right)=1-\alpha$

$100(1-\alpha) \%$ confidence interval

A $100(1-\alpha) \%$ confidence interval for the mean μ of a normal population when the value of σ is known is given by

$$
\begin{equation*}
\left(\bar{x}-z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}\right) \tag{8.5}
\end{equation*}
$$

or, equivalently, by $\bar{x} \pm z_{\alpha / 2} \cdot \sigma / \sqrt{n}$.

Interpreting confidence intervals

95\% confidence interval: If we repeat the experiment many times, the interval contains μ about 95% of the time

