## MATH 205: Statistical methods

Lab 7: Confidence intervals

MATH 205: Statistical methods

### A good prediction comes with a range



MATH 205: Statistical methods

- Assume that you have been using an AI to predict the stock price of Microsoft every day in the last few years
- The prediction comes as a range, e.g., [295, 305]
- The algorithm, on average, is correct 95 out of 100 days
- $\bullet\,$  Then we say that a prediction from this AI has a confidence of  $95\%\,$

Suppose we are studying a distribution with with mean  $\mu$  (unknown) and standard deviation  $\sigma = 0.85$ . A random sample of n = 50 specimens is selected with sample average  $\bar{X}$ . We know that  $\bar{X}$  can be used to approximate  $\mu$ .

Question: Find a general rule of c (that depends on  $\bar{X}$ ) such that

$$P\left[ar{X}-ar{c}\leq\mu\leqar{X}+ar{c}
ight]=0.95$$

 $\rightarrow$  The interval  $[\bar{X} - c, \bar{X} + c]$  is a confidence interval with confidence level 95%.

#### Theorem

Let  $X_1, X_2, \ldots, X_n$  be a random sample from a distribution with mean  $\mu$  and variance  $\sigma^2$ . Then, in the limit when  $n \to \infty$ , the standardized version of  $\overline{X}$  have the standard normal distribution

$$\lim_{n\to\infty} \mathbb{P}\left(\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \leq z\right) = \mathbb{P}[Z \leq z] = \Phi(z)$$

Rule of Thumb:

If n > 30, the Central Limit Theorem can be used for computation.

We know that

$$P\left[ar{X}-c\leq \mu\leq ar{X}+c
ight]=0.95$$

is equivalent to

$$P\left[ar{X}-\mu-c\leq0\leqar{X}-\mu+c
ight]=0.95$$

is equivalent to

$$P\left[\frac{-c}{\sqrt{n}} \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le \frac{c}{\sqrt{n}}\right] = 0.95$$

MATH 205: Statistical methods

## Confidence interval

• We have

$$P\left[-1.96 \le rac{ar{X}-\mu}{\sigma/\sqrt{n}} \le 1.96
ight] = 0.95$$

• Rearranging the inequalities gave

$$P\left[ar{X} - 1.96rac{\sigma}{\sqrt{n}} \le \mu \le ar{X} + 1.96rac{\sigma}{\sqrt{n}}
ight] = 0.95$$

• This means that if you use

$$\left[ar{X}-1.96rac{\sigma}{\sqrt{n}},ar{X}+1.96rac{\sigma}{\sqrt{n}}
ight]$$

as a range to estimate  $\mu,$  then you are correct 95% of the time.

#### Normal distribution with know $\sigma$

Using

$$\left[ar{X}-1.96rac{\sigma}{\sqrt{n}},ar{X}+1.96rac{\sigma}{\sqrt{n}}
ight]$$

as a range to estimate  $\mu$  is correct 95% of the time.

• If after observing  $X_1 = x_1$ ,  $X_2 = x_2$ ,...,  $X_n = x_n$ , we compute the observed sample mean  $\bar{x}$ . Then

$$\left(\bar{x} - 1.96 \frac{\sigma}{\sqrt{n}}, \bar{x} + 1.96 \frac{\sigma}{\sqrt{n}}\right)$$

is a 95% confidence interval of  $\mu$ 

### z-critical value

NOTATION  $z_{\alpha}$  will denote the value on the measurement axis for which  $\alpha$  of the area under the z curve lies to the right of  $z_{\alpha}$ . (See Figure 4.19.)

For example,  $z_{.10}$  captures upper-tail area .10 and  $z_{.01}$  captures upper-tail area .01.



Figure 4.19  $z_{\alpha}$  notation illustrated

Since  $\alpha$  of the area under the standard normal curve lies to the right of  $z_{\alpha}$ ,  $1 - \alpha$  of the area lies to the left of  $z_{\alpha}$ . Thus  $z_{\alpha}$  is the  $100(1 - \alpha)$ th percentile of the standard normal distribution. By symmetry the area under the standard normal curve to the left of  $-z_{\alpha}$  is also  $\alpha$ . The  $z_{\alpha}$ 's are usually referred to as **z** critical values. Table 4.1 lists the most useful standard normal percentiles and  $z_{\alpha}$  values.

< ロ > < 同 > < 三 > < 三 >

# $100(1-\alpha)\%$ confidence interval



Figure 8.4  $P(-z_{\alpha/2} \le Z \le z_{\alpha/2}) = 1 - \alpha$ 

MATH 205: Statistical methods

• • = • • = •

3

A 100(1 –  $\alpha$ )% confidence interval for the mean  $\mu$  of a normal population when the value of  $\sigma$  is known is given by

$$\left(\bar{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right)$$
(8.5)

or, equivalently, by  $\overline{x} \pm z_{\alpha/2} \cdot \sigma / \sqrt{n}$ .

A B M A B M

## Interpreting confidence intervals



95% confidence interval: If we repeat the experiment many times, the interval contains  $\mu$  about 95% of the time