MATH 205: Statistical methods

Lab 9: Hypothesis testing

MATH 205: Statistical methods

In a hypothesis-testing problem, there are two contradictory hypotheses under consideration

- The null hypothesis, denoted by *H*₀, is the claim that is initially assumed to be true
- The alternative hypothesis, denoted by H_a , is the assertion that is contradictory to H_0 .
- The null hypothesis will be rejected in favor of the alternative hypothesis only if sample evidence suggests that H_0 is false.
- If the sample does not strongly contradict *H*₀, we will continue to believe in the probability of the null hypothesis.

• Null hypothesis

$$H_0: \mu = \mu_0$$

• The alternative hypothesis will be either:

•
$$H_a: \mu < \mu_0$$

• $H_a: \mu \neq \mu_0$

Note: μ_0 here denotes a constant, and μ denotes the population mean (unknown)

- Q-Q plot
- Testing of the population mean: t-test
- Testing about the mean of two populations
- Testing about goodness of fit

- a Q–Q (quantile-quantile) plot is a probability plot for comparing two probability distributions by plotting their quantiles against each other
- If the two distributions being compared are similar, the points in the Q-Q plot will approximately lie on the line y = x
- If the distributions are linearly related, the points in the Q–Q plot will approximately lie on a line

2. Testing with a population mean

In the lecture, we consider two statistical settings

- Simplest setting
 - Normal distribution
 - σ is known
- Large-sample setting
 - Normal distribution

ightarrow use Central Limit Theorem ightarrow needs n>30

• σ is known

ightarrow replace σ by s ightarrow needs n > 40

For both settings, we rely on the z-value

$$z = rac{ar{x} - \mu_0}{\sigma / \sqrt{n}}$$
 or $z = rac{ar{x} - \mu_0}{s / \sqrt{n}}$

 \rightarrow z-tests

A more practical setting

- Simplest setting
 - Normal distribution
 - σ is unknown
 - *n* < 40

We can still use

$$\frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$

but it no longer follows normal distribution.

t distributions with degree of freedom ν

Probability density function

$$f(t) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\,\Gamma(\frac{\nu}{2})} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

MATH 205: Statistical methods

PROPERTIES OF T DISTRI-BUTIONS

- 1. Each t_v curve is bell-shaped and centered at 0.
- **2.** Each t_v curve is more spread out than the standard normal (z) curve.
- **3.** As v increases, the spread of the t_v curve decreases.
- As v → ∞, the sequence of t_v curves approaches the standard normal curve (so the z curve is often called the t curve with df = ∞).

▶ ∢ ≣ ▶

• When \bar{X} is the mean of a random sample of size n from a normal distribution with mean μ , the rv

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

has the *t* distribution with n - 1 degree of freedom (df).

• This means that the testing procedure is the same as the z-test, only with normal table replaced by t-table.

 If we toss a die 150 times and find that we have the following distribution of rolls,

face	1	2	3	4	5	6
Number of rolls	22	21	22	27	22	36

Is the die fair?

• If the die is fair, the probability of each face should be the same or 1/6. In 150 rolls then you would expect each face to have about 25 appearances. Yet the 6 appears 36 times. Is this coincidence or perhaps something else?

Idea: If we call f_i the frequency of category i, and e_i the expected count of category i, then the statistic

$$\sum_{i=1}^n \frac{(f_i - e_i)^2}{e_i}$$

follows χ^2 distribution with degree of freedom n-1.

Chi-squared distribution

The pdf of a Chi-squared distribution with degree of freedom $\nu,$ denoted by $\chi^2_{\nu},$ is

$$f(x) = \begin{cases} \frac{1}{2^{1/2} \Gamma(\nu/2)} x^{(\nu/2)-1} e^{-x/2} & x > 0\\ 0 & x \le 0 \end{cases}$$

MATH 205: Statistical methods

Why is Chi-squared useful?

- If Z has standard normal distribution Z(0, 1) and X = Z², then X has Chi-squared distribution with 1 degree of freedom, i.e. X ~ χ²₁ distribution.
- If $X_1 \sim \chi^2_{
 u_1}$, $X_2 \sim \chi^2_{
 u_2}$ and they are independent, then

$$X_1 + X_2 \sim \chi^2_{\nu_1 + \nu_2}$$

• If Z_1, Z_2, \ldots, Z_n are independent and each has the standard normal distribution, then

$$Z_1^2+Z_2^2+\ldots+Z_n^2\sim\chi_n^2$$

Example

• The letter distribution of the 5 most popular letters in the English language is known to be approximately

That is when either E,T,N,R,O appear, on average 29 times out of 100 it is an E and not the other 4.

• Suppose a text is analyzed and the number of E,T,N,R and O's are counted. The following distribution is found

letter	E	Т	Ν	R	0
freq.	100	110	80	55	14

• Is this message likely to be written in English?