MATH 205: Statistical methods

September 20th, 2021

Lecture 5: Independence

Tentative schedule

Date	Theme/Topic	Labs	Assignments
Sep 1	Syllabus		
Sep 8	Chapter 1: Describing dataset	Section 2: Handling data	
Sep 13-15	Chapter 2: Looking at Relationships	Section 3: Univariate data	
Sep 20-22	Chapter 3: Basic Ideas in Probability	Section 4: Bivariate Data	Homework 1 (due 09/22)
Sep 27-29	Chapters 3-4	Section 4: Correlation	
Oct 4-6	Chapter 4: Random variables and expectations	Section 6: Random data	Homework 2 (due 10/06)
Oct 11-13	Chapter 5: Useful distributions	Section 7: The central limit theorem	
Oct 18-20	Chapter 6: Samples and populations	Section 9: Confidence interval estimation	Homework 3 (due 10/20)
Oct 25-27	Review and midterm exam		Midterm: Oct 27 (lecture), Oct 25-27 (labs)
Nov 1-3	Chapter 7: The significance of evidence	Section 10: Hypothesis testing	
Nov 8-10	Goodness of Fit	Section 12: Goodness of Fit	Homework 4 (due 11/10)
Nov 15-17	Linear Regression	Section 13: Linear regression	
Nov 22-24	Thanksgiving break		
Nov 29 - Dec 1	One-Way Analysis of Variance	Section 15: Analysis of variance	Homework 5 (due 12/01)
Dec 6-8	Selected topics + Review		
Exam week			

Last lecture

- Sample space and events
- Basic properties of probability
- Advanced properties of probability
- Compute probability
- Computing event probabilities by counting outcomes
- Computing probabilities by reasoning about sets

Sample space and events

(1) An experiment: is any action, process, or phenomenon whose outcome is subject to uncertainty
(2) An outcome: is a result of an experiment Each run of the experiment results in one outcome
(3) A sample space: is the set of all possible outcomes of an experiment
(9) An event: is a subset of the sample space.

An event occurs when one of the outcomes that belong to it occurs

Different views of probability

- Frequentist: The probability of an outcome is the frequency of that outcome in a very large number of repeated experiments
- Bayesian: Probability is a quantification of a belief about how often an outcomes occurs

Bottom line: Probability is a function defined on the set of events of an experiment

Basic properties of probability

Useful Facts 3.1 (Basic Properties of the Probability Events)

We have

- The probability of every event is between zero and one; in equations

$$
0 \leq P(\mathcal{A}) \leq 1
$$

for any event \mathcal{A}.

- Every experiment has an outcome; in equations,

$$
P(\Omega)=1
$$

- The probability of disjoint events is additive; writing this in equations requires some notation. Assume that we have a collection of events \mathcal{A}_{i}, indexed by i. We require that these have the property $\mathcal{A}_{i} \cap \mathcal{A}_{j}=\varnothing$ when $i \neq j$. This means that there is no outcome that appears in more than one \mathcal{A}_{i}. In turn, if we interpret probability as relative frequency, we must have that

$$
P\left(\cup_{i} \mathcal{A}_{i}\right)=\sum_{i} P\left(\mathcal{A}_{i}\right)
$$

Advanced properties of probability

Useful Facts 3.2 (Properties of the Probability of Events)

- $P\left(\mathcal{A}^{c}\right)=1-P(\mathcal{A})$
- $P(\varnothing)=0$
- $P(\mathcal{A}-\mathcal{B})=P(\mathcal{A})-P(\mathcal{A} \cap \mathcal{B})$
- $P(\mathcal{A} \cup \mathcal{B})=P(\mathcal{A})+P(\mathcal{B})-P(\mathcal{A} \cap \mathcal{B})$

Others

- If $A \subset B$, then $P(A) \leq P(B)$.
- For any events A, B

$$
P(A)=P(A \cap B)+P\left(A \cap B^{c}\right)
$$

Independence

Independence

- Some experimental results do not affect others
- Example: if I flip a coin twice, whether I get heads on the first flip has no effect on whether I get heads on the second flip
- We refer to events with this property as independent.

Independence

Definition

Two events A and B are independent if and only if

$$
P(A \cap B)=P(A) P(B)
$$

Dependent events: example

Toss a fair dice:

- A: the event that the die comes up with an odd number of spots
- B: the event that the number of spots is larger than 3.
- $P(A)=P(B)=1 / 2$
- If we know that A has occurred, then we know the die shows either 1,3 , or 5 spots. One of these outcomes belongs to B, and two do not. $P(A \cap B)=1 / 6$.
- This means that knowing that A has occurred tells you something about whether B has occurred.
\rightarrow These events are interrelated.

Independence: example

Problem

A red die and a white die are rolled. Let event

$$
A=\{4 \text { on the red die }\}
$$

and event

$$
B=\{\text { sum of dice is odd }\} .
$$

Show that A and B are independent.

Independence

Problem

Prove that if A and B are independent, then A and B^{c} are independent as well.

Independence

Problem

Prove that if A and B are mutually exclusive events, and $P(A)>0, P(B)>0$, then they are dependent.

Independence

Problem

If $P(A)=0.5, P(B)=0.2$ and $P(A \cup B)=0.65$. Are A and B independent?

Independence

Problem

I search a DNA database with a sample. Each time I attempt to match this sample to an entry in the database, there is a probability of an accidental chance match of 10^{-4}. Chance matches are independent. There are 20,000 people in the database. What is the probability I get at least one match, purely by chance?

