MATH 205: Statistical methods

September 29th, 2021
Lecture 8: Continuous random variables

Random variables and expectations

4.1 Random variables
4.2 Expectations
4.3 The Weak Law of Large Numbers

Random variables

Notations:

- random variables are denoted by uppercase letters (e.g., X);
- the observed values of the random variables are denoted by lowercase letters (e.g., x)

Discrete random variable

Definition

A random variables X is discrete if the set of all possible values of X

- is finite
- is countably infinite

Note: A set A is countably infinite if its elements can be put in one-to-one correspondence with the set of natural numbers, i.e, we can index the element of A as a sequence

$$
A=\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}
$$

Discrete random variable

Definition (Probability Distribution of a Discrete Random Variable)
The probability distribution of a discrete random variable is the set of numbers $P(X=x)$ or each value x that X can take. The distribution takes the value 0 at all other numbers. Notice that the distribution is non-negative. The probability distribution is also known as the probability mass function.

Represent the probability mass function

- As a table

x	1	2	3	4	5	6	7
$p(x)$.01	.03	.13	.25	.39	.17	.02

- As a function:

$$
p(x)= \begin{cases}\frac{1}{2}\left(\frac{2}{3}\right)^{x} & \text { if } x=1,2,3, \ldots \\ 0 & \text { elsewhere }\end{cases}
$$

Joint probability

Definition 4.4 (Joint Probability Distribution of Two Discrete Random Variables) Assume we have two random variables X and Y. The probability that X takes the value x and Y takes the value y could be written as $P(\{X=x\} \cap$ $\{Y=y\})$. It is more usual to write it as

$$
P(x, y)
$$

This is referred to as the joint probability distribution of the two random variables (or, quite commonly, the joint). You can think of this as a table of probabilities, one for each possible pair of x and y values.

Marginal probability

Definition 4.6 (Marginal Probability of a Random Variable) Write $P(x, y)$ for the joint probability distribution of two random variables X and Y. Then

$$
P(x)=\sum_{y} P(x, y)=\sum_{y} P(\{X=x\} \cap\{Y=y\})=P(\{X=x\})
$$

is referred to as the marginal probability distribution of X.

Independent variables

Definition 4.7 (Independent Random Variables) The random variables X and Y are independent if the events $\{X=x\}$ and $\{Y=y\}$ are independent for all values x and y. This means that

$$
P(\{X=x\} \cap\{Y=y\})=P(\{X=x\}) P(\{Y=y\}),
$$

which we can rewrite as

$$
P(x, y)=P(x) P(y)
$$

Example

Example

Measurements for the length and width of rectangular plastic covers for CDs are rounded to the nearest mm. Let X denote the length and Y denote the width. Assume that the joint probability of X and Y is represented by the following table

What is the probability distribution of X ?

Example

Example

Measurements for the length and width of rectangular plastic covers for CDs are rounded to the nearest mm. Let X denote the length and Y denote the width. Assume that the joint probability of X and Y is represented by the following table

x=length			
129 130 131 15 0.12 0.42 0.06 16 0.08 0.28 0.04			

Are X and Y independent?

Example

Example

Assume that the joint probability of X and Y is represented by the following table

	\mathbf{Y}		
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{1}$	0.32	0.03	0.01
$\mathbf{2}$	0.06	0.24	0.02
$\mathbf{3}$	0.02	0.03	0.27

What are the probability distribution of X and Y ? Are they independent?

Continuous random variables

Continuous random variables

Definition

Let X be a random variable. Suppose that there exists a nonnegative real-valued function $f: \mathbb{R} \rightarrow[0, \infty)$ such that for any subset of real numbers A, we have

$$
P(X \in A)=\int_{A} f(x) d x
$$

Then X is called absolutely continuous or, for simplicity, continuous. The function f is called the probability density function, or simply the density function of X.
Whenever we say that X is continuous, we mean that it is absolutely continuous and hence satisfies the equation above.

Properties

Let X be a continuous r.v. with density function f, then

- $f(x) \geq 0$ for all $x \in \mathbb{R}$
- $\int_{-\infty}^{\infty} f(x) d x=1$
- For any fixed constant a, b,

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

Figure 4.2 $P(a \leq X \leq b)=$ the area under the density curve between a and b

Example

Problem

Let X be a continuous r.v. with density function

$$
f(x)= \begin{cases}2 x & \text { if } x \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

Compute $P(X \in[0.25,0.75])$

Distribution function

Definition

If X is a random variable, then the function F defined on $(-\infty, \infty)$ by

$$
F(t)=P(X \leq t)
$$

is called the distribution function of X.

Figure 4.2 $P(a \leq X \leq b)=$ the area under the density curve between a and b

Distribution function

For continuous random variable:

$$
\begin{aligned}
F(t)=P(X \leq t) & =\int_{(-\infty, t]} f(x) d x \\
& =\int_{-\infty}^{t} f(x) d x
\end{aligned}
$$

Distribution function

For continuous random variable:

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Figure 4.2 $P(a \leq X \leq b)=$ the area under the density curve between a and b

Moreover:

$$
f(x)=F^{\prime}(x)
$$

Example

Problem

The distribution function for the duration of a certain soap opera (in tens of hours) is

$$
F(y)= \begin{cases}1-\frac{16}{y^{2}} & \text { if } y \geq 4 \\ 0 & \text { elsewhere }\end{cases}
$$

Find $P[4 \leq Y \leq 8]$.

