MATH 205: Statistical methods

October 4th, 2021

Lecture 9: Expectations

Random variables and expectations

4.1 Random variables
4.2 Expectations
4.3 The Weak Law of Large Numbers

Random variables

Notations:

- random variables are denoted by uppercase letters (e.g., X);
- the observed values of the random variables are denoted by lowercase letters (e.g., x)

Discrete random variable

Definition

A random variables X is discrete if the set of all possible values of X

- is finite
- is countably infinite

Represent the probability mass function

- As a table

x	1	2	3	4	5	6	7
$p(x)$.01	.03	.13	.25	.39	.17	.02

- As a function:

$$
p(x)= \begin{cases}\frac{1}{2}\left(\frac{2}{3}\right)^{x} & \text { if } x=1,2,3, \ldots \\ 0 & \text { elsewhere }\end{cases}
$$

Continuous random variables

Definition

Let X be a random variable. Suppose that there exists a nonnegative real-valued function $f: \mathbb{R} \rightarrow[0, \infty)$ such that for any subset of real numbers A, we have

$$
P(X \in A)=\int_{A} f(x) d x
$$

Then X is called continuous. The function f is called the probability density function, or simply the density function of X.

Properties

Let X be a continuous r.v. with density function f, then

- $f(x) \geq 0$ for all $x \in \mathbb{R}$
- $\int_{-\infty}^{\infty} f(x) d x=1$
- For any fixed constant a, b,

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

Figure 4.2 $P(a \leq X \leq b)=$ the area under the density curve between a and b

Distribution function

Definition

If X is a random variable, then the function F defined on $(-\infty, \infty)$ by

$$
\begin{aligned}
F(t)=P(X \leq t) & =\int_{(-\infty, t]} f(x) d x \\
& =\int_{-\infty}^{t} f(x) d x
\end{aligned}
$$

is called the distribution function of X.

Distribution function

For continuous random variable:

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Figure 4.2 $P(a \leq X \leq b)=$ the area under the density curve between a and b

Moreover:

$$
f(x)=F^{\prime}(x)
$$

Joint probability and marginal probability

Definition 4.4 (Joint Probability Distribution of Two Discrete Random Variables) Assume we have two random variables X and Y. The probability that X takes the value x and Y takes the value y could be written as $P(\{X=x\} \cap$ $\{Y=y\})$. It is more usual to write it as

$$
P(x, y)
$$

This is referred to as the joint probability distribution of the two random variables (or, quite commonly, the joint). You can think of this as a table of probabilities, one for each possible pair of x and y values.

Definition 4.6 (Marginal Probability of a Random Variable) Write $P(x, y)$ for the joint probability distribution of two random variables X and Y. Then

$$
P(x)=\sum_{y} P(x, y)=\sum_{y} P(\{X=x\} \cap\{Y=y\})=P(\{X=x\})
$$

is referred to as the marginal probability distribution of X.

Independent variables

Definition 4.7 (Independent Random Variables) The random variables X and Y are independent if the events $\{X=x\}$ and $\{Y=y\}$ are independent for all values x and y. This means that

$$
P(\{X=x\} \cap\{Y=y\})=P(\{X=x\}) P(\{Y=y\}),
$$

which we can rewrite as

$$
P(x, y)=P(x) P(y)
$$

Expectations

Expected values

Assume that we are playing a game.

- Toss a fair coin 2 times
- For every head, I'll give you one dollar. For every tail, I'll give you four dollars.
But you have to pay c dollars to me to play the game. What is the maximum amount c would you pay to play the game?

Expected values

The distribution of the amount X you're getting out of one game is

X	2	5	8
probability	0.25	0.5	0.25

Question: What is the (theoretical) average of the amount that you would get out of one game?

Expected value: discrete variables

Definition

Given a discrete random variable X which takes values in the set \mathcal{D} and which has probability distribution P, we define the expected value of X as

$$
\mathbb{E}[X]=\sum_{x \in \mathcal{D}} x P(X=x)
$$

This is sometimes written $\mathbb{E}_{P}[X]$, to clarify which distribution one has in mind.

Expected value: discrete variables

Example

We agree to play the following game. I flip a fair coin. If the coin comes up heads, you pay me 2; if the coin comes up tails, I pay you 1 . What is the expected value of my income?

Expected value: discrete variables

Definition

Assume we have a function f that maps a discrete random variable X into a set of numbers D_{f}. Then $f(X)$ is a discrete random variable, too, which we write F. The expected value of this random variable is written

$$
\mathbb{E}[f(X)]=\sum_{u \in \mathcal{D}_{f}} u P(F=u)=\sum_{x \in \mathcal{D}} f(x) P(X=x)
$$

which is sometimes referred to as "the expectation of f ". The process of computing an expected value is sometimes referred to as "taking expectations".
This is sometimes written $\mathbb{E}[f]$, or $\mathbb{E}_{P}[f]$ or $\mathbb{E}_{P(X)}[f]$.

Exercise

Problem

A random variable X has the following pmf table

X	0	1	2
probability	0.25	0.5	0.25

- What is $\mathbb{E}\left[X^{2}-X\right]$?
- Compute $\mathbb{E}\left[2^{X}\right]$

Expected value: continuous variables

Definition

Given a discrete random variable X which takes values in the set \mathcal{D} and which has probability density function $p(x)$, we define the expected value of X as

$$
\mathbb{E}[X]=\int_{\mathcal{D}} x p(x) d x
$$

This is sometimes written $\mathbb{E}_{P}[X]$, to clarify which distribution one has in mind.

Expected value: continuous variables

Definition

Assume we have a function f that maps a discrete random variable X into a set of numbers D_{f}. Then $f(X)$ is a continuous random variable, too, which we write F. The expected value of this random variable is written

$$
\mathbb{E}[f(X)]=\int_{\mathcal{D}} f(x) p(x) d x
$$

which is sometimes referred to as "the expectation of f ". The process of computing an expected value is sometimes referred to as "taking expectations".
This is sometimes written $\mathbb{E}[f]$, or $\mathbb{E}_{P}[f]$ or $\mathbb{E}_{P(X)}[f]$.

Example

Problem

Let X be a continuous r.v. with density function

$$
f(x)= \begin{cases}2 x & \text { if } x \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

Compute $\mathbb{E}[X]$ and $\mathbb{E}\left(X^{2}\right)$.

Mean and variance

Definition

- The mean or expected value of a random variable X is

$$
\mathbb{E}[X]
$$

- The variance of a random variable X is

$$
\operatorname{var}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]
$$

- The standard deviation of a random variable X is defined as

$$
\operatorname{std}(X)=\sqrt{\operatorname{var}(X)}
$$

Exercise

Problem

A random variable X has the following pmf table

X	0	1	2
probability	0.25	0.5	0.25

Compute var (X).

Example

Problem

Let X be a continuous r.v. with density function

$$
f(x)= \begin{cases}2 x & \text { if } x \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

Compute var (X).

