MATH 205: Statistical methods

October 6th, 2021
Lecture 10: Mean, variance, covariance

Random variables and expectations

4.1 Random variables
4.2 Expectations

- Expected values
- Mean, variance and covariance
4.3 The Weak Law of Large Numbers

Random variables

Notations:

- random variables are denoted by uppercase letters (e.g., X);
- the observed values of the random variables are denoted by lowercase letters (e.g., x)

Discrete random variable

Definition

A random variables X is discrete if the set of all possible values of X

- is finite
- is countably infinite

Represent the probability mass function

- As a table

x	1	2	3	4	5	6	7
$p(x)$.01	.03	.13	.25	.39	.17	.02

- As a function:

$$
p(x)= \begin{cases}\frac{1}{2}\left(\frac{2}{3}\right)^{x} & \text { if } x=1,2,3, \ldots \\ 0 & \text { elsewhere }\end{cases}
$$

Continuous random variables

Definition

Let X be a random variable. Suppose that there exists a nonnegative real-valued function $f: \mathbb{R} \rightarrow[0, \infty)$ such that for any subset of real numbers A, we have

$$
P(X \in A)=\int_{A} f(x) d x
$$

Then X is called continuous. The function f is called the probability density function, or simply the density function of X.

Properties

Let X be a continuous r.v. with density function f, then

- $f(x) \geq 0$ for all $x \in \mathbb{R}$
- $\int_{-\infty}^{\infty} f(x) d x=1$
- For any fixed constant a, b,

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

Figure 4.2 $P(a \leq X \leq b)=$ the area under the density curve between a and b

Joint probability and marginal probability

Definition 4.4 (Joint Probability Distribution of Two Discrete Random Variables) Assume we have two random variables X and Y. The probability that X takes the value x and Y takes the value y could be written as $P(\{X=x\} \cap$ $\{Y=y\})$. It is more usual to write it as

$$
P(x, y)
$$

This is referred to as the joint probability distribution of the two random variables (or, quite commonly, the joint). You can think of this as a table of probabilities, one for each possible pair of x and y values.

Definition 4.6 (Marginal Probability of a Random Variable) Write $P(x, y)$ for the joint probability distribution of two random variables X and Y. Then

$$
P(x)=\sum_{y} P(x, y)=\sum_{y} P(\{X=x\} \cap\{Y=y\})=P(\{X=x\})
$$

is referred to as the marginal probability distribution of X.

Independent variables

Definition 4.7 (Independent Random Variables) The random variables X and Y are independent if the events $\{X=x\}$ and $\{Y=y\}$ are independent for all values x and y. This means that

$$
P(\{X=x\} \cap\{Y=y\})=P(\{X=x\}) P(\{Y=y\}),
$$

which we can rewrite as

$$
P(x, y)=P(x) P(y)
$$

Expectations

Expected value: discrete variables

Definition

Given a discrete random variable X which takes values in the set \mathcal{D} and which has probability distribution P :

- The expected value of X is defined as

$$
\mathbb{E}[X]=\sum_{x \in \mathcal{D}} x P(X=x)
$$

- $f(X)$ is a also discrete random variable, which we write F and

$$
\mathbb{E}[f(X)]=\sum_{u \in \mathcal{D}_{f}} u P(F=u)=\sum_{x \in \mathcal{D}} f(x) P(X=x)
$$

which is sometimes referred to as "the expectation of f ".

Expected value: continuous variables

Definition

Given a discrete random variable X which takes values in the set \mathcal{D} and which has probability density function $p(x)$:

- The expected value of X is defined as

$$
\mathbb{E}[X]=\int_{\mathcal{D}} x p(x) d x
$$

- $f(X)$ is also a continuous random variable, which we write F and

$$
\mathbb{E}[f(X)]=\int_{\mathcal{D}} f(x) p(x) d x
$$

which is sometimes referred to as "the expectation of f "

Expected value: multivariate

Given two discrete random variable X, Y and f is a function of (X, Y). Then $f(X, Y)$ is a also discrete random variable, and

$$
\mathbb{E}[f(X, Y)]=\sum_{x, y} f(x, y) P(x, y)
$$

Mean, variance and covariance (of random variables)

Mean and variance

Definition

- The mean or expected value of a random variable X is

$$
\mathbb{E}[X]
$$

- The variance of a random variable X is

$$
\operatorname{var}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]
$$

- The standard deviation of a random variable X is defined as

$$
\operatorname{std}(X)=\sqrt{\operatorname{var}(X)}
$$

Exercise

Problem

A random variable X has the following pmf table

X	0	1	2
probability	0.25	0.5	0.25

Compute var (X).

Example

Problem

Let X be a continuous r.v. with density function

$$
f(x)= \begin{cases}2 x & \text { if } x \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

Compute var (X).

Expectations are linear

Useful Facts 4.2 (Expectations Are Linear) Write f, g for functions of random variables.

- $\mathbb{E}[0]=0$
- for any constant $k, \mathbb{E}[k f]=k \mathbb{E}[f]$
- $\mathbb{E}[f+g]=\mathbb{E}[f]+\mathbb{E}[g]$.

A useful expression

Lemma
The variance of a random variable X can be computed by

$$
\operatorname{var}[X]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}
$$

Properties of variance

Lemma

We have

- For any constant $k, \operatorname{var}[k]=0$;
- $\operatorname{var}[X] \geq 0$;
- $\operatorname{var}[k X]=k^{2} \operatorname{var}[X]$

Covariance

Definition
The covariance of of two random variables X and Y is

$$
\operatorname{cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]
$$

Covariance: properties

- Note that

$$
\operatorname{cov}(X, X)=\operatorname{var}(X)
$$

- The covariance of of two random variables X and Y can be computed as

$$
\operatorname{cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
$$

Independent variables have zero covariance

Proposition
If X and Y are independent, then

- $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$
- $\operatorname{cov}(X, Y)=0$

Variance of sum of independent variables

Proposition
If X and Y are independent, then

$$
\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)
$$

Exercise

Problem

A random variable X has the following pmf table

X	0	1	2
probability	0.25	0.5	0.25

Let Y be a continuous r.v. with density function

$$
f(y)= \begin{cases}2 x & \text { if } y \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

Assume that X and Y are independent. You can prove that X and $-Y$ are also independent.
Compute

- $E(X+Y), \operatorname{Var}(X+Y)$
- $E(X-Y), \operatorname{Var}(X-Y)$

