MATH 205: Statistical methods

October 18th, 2021
Lecture 13: Samples and Populations

Announcements

- Homework 3: due Wednesday
- Midterm exam (written part): next Wednesday. The exam covers everything up to Chapter 6 (Confidence Interval).
- Midterm exam (simulations):
- Section 050L: next Monday
- Section 051L: next Wednesday

The exam covers everything up Central Limit Theorem.

Summary of Quiz 1

Summary of Quiz 1

Chapter 6: Samples and Populations

6.1 The Sample Mean
6.2 Confidence Intervals

Samples and populations

- Very often, the data we see is a small part of the data we could have seen
- The data we could have observed, if we could have seen everything, is the population
- The data we actually have is the sample

Samples and populations

This situation occurs very often

- Imagine we wish to know the average weight of a rat. This isn't random; you could weigh every rat on the planet, and then average the answers.
- Instead, we weigh a small set of rats, chosen at random but rather carefully so.
- If we have chosen sufficiently carefully, then we can say a great deal from the sample alone

Distributions are like populations

- we can think about population as a probability distribution P
- the samples are random variables X generated from P
- from the observed values of the samples, we want to infer properties about P

Random sample

Definition

The random variables $X_{1}, X_{2}, \ldots, X_{n}$ are said to form a (simple) random sample of size n if

1. the X_{i} 's are independent random variables
2. every X_{i} has the same probability distribution

The sample mean is an estimate of the population mean

Definition

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution. The sample mean is defined as

$$
\bar{X}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}
$$

- The sample mean is a random variable.
- It is random, because different samples from the population will have different values of the sample mean.

Reminder: notations

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of size n
- The sample mean of $X_{1}, X_{2}, \ldots, X_{n}$, defined by

$$
\bar{X}=\frac{X_{1}+X_{2}+\ldots X_{n}}{n}
$$

is a random variables

- When the values of $x_{1}, x_{2}, \ldots, x_{n}$ are collected,

$$
\bar{x}=\frac{x_{1}+x_{2}+\ldots x_{n}}{n}
$$

is a realization of the \bar{X}, and is a number

The sample mean is an estimate of the population mean

Questions:

- What can we say about the distribution of \bar{X} ?
- When can we use \bar{X} to estimate the population mean with confidence?

Linear combinations of random variables

Linear combination of random variables

Theorem
Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables (with possibly different means and/or variances). Define

$$
T=a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{n} X_{n}
$$

then the mean and the standard deviation of T can be computed by

- $E(T)=a_{1} E\left(X_{1}\right)+a_{2} E\left(X_{2}\right)+\ldots+a_{n} E\left(X_{n}\right)$
- $\operatorname{Var}(T)=a_{1}^{2} \operatorname{Var}\left(X_{1}\right)+a_{2}^{2} \operatorname{Var}\left(X_{2}\right)+\ldots+a_{n}^{2} \operatorname{Var}\left(X_{n}\right)$

Linear combination of normal random variables

Theorem
Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent normal random variables (with possibly different means and/or variances). Then

$$
T=a_{1} X_{1}+a_{2} X_{2}+\ldots a_{n} X_{n}
$$

also follows the normal distribution with

- $E(T)=a_{1} E\left(X_{1}\right)+a_{2} E\left(X_{2}\right)+\ldots+a_{n} E\left(X_{n}\right)$
- $\operatorname{Var}(T)=a_{1}^{2} \operatorname{Var}\left(X_{1}\right)+a_{2}^{2} \operatorname{Var}\left(X_{2}\right)+\ldots+a_{n}^{2} \operatorname{Var}\left(X_{n}\right)$

Example

Problem

A gas station sells three grades of gasoline: regular unleaded, extra unleaded, and super unleaded. These are priced at 2.20, 2.35, and 2.50 per gallon, respectively.

Let X_{1}, X_{2}, and X_{3} denote the amounts of these grades purchased (gallons) on a particular day. Suppose the X_{i} 's are independent with $\mu_{1}=1000, \mu_{2}=500, \mu_{3}=300, \sigma_{1}=100, \sigma_{2}=80, \sigma_{3}=50$. Compute the expected value and the standard deviation of the revenue from sales

$$
Y=2.2 X_{1}+2.35 X_{2}+2.5 X_{3}
$$

Mean and variance of the sample mean

Problem

Given independent random samples $X_{1}, X_{2}, \ldots, X_{n}$ from a distribution with mean μ and standard deviation σ, the mean is modeled by a random variable \bar{X},

$$
\bar{X}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}
$$

Compute $E(\bar{X})$ and $\operatorname{Var}(\bar{X})$ (in terms of μ and σ.)

