MATH 205: Statistical methods

October 20th, 2021

Lecture 14: Distribution of the sample mean

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Announcements

- Midterm exam (written part): next Wednesday. The exam covers everything up to Chapter 6 (Confidence Interval).
- Midterm exam (simulations):
 - Section 050L: next Monday
 - Section 051L: next Wednesday

The exam covers everything up Central Limit Theorem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Chapter 6: Samples and Populations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- 6.1 The Sample Mean
- 6.2 Confidence Intervals

Random sample

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

The random variables $X_1, X_2, ..., X_n$ are said to form a (simple) random sample of size n if

- 1. the X_i 's are independent random variables
- 2. every X_i has the same probability distribution

The sample mean is an estimate of the population mean

Definition

Let $X_1, X_2, ..., X_n$ be a random sample from a distribution. The sample mean is defined as

$$\bar{X} = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

- The sample mean is a random variable.
- It is random, because different samples from the population will have different values of the sample mean.

Reminder: notations

- Let X_1, X_2, \ldots, X_n be a random sample of size n
- The sample mean of X_1, X_2, \ldots, X_n , defined by

$$\bar{X}=\frac{X_1+X_2+\ldots X_n}{n},$$

is a random variables

• When the values of x_1, x_2, \ldots, x_n are collected,

$$\bar{x}=\frac{x_1+x_2+\ldots x_n}{n},$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is a realization of the \bar{X} , and is a number

The sample mean is an estimate of the population mean

Questions:

- What can we say about the distribution of \bar{X} ?
- When can wee use \bar{X} to estimate the population mean with confidence?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Linear combination of random variables

Theorem

Let $X_1, X_2, ..., X_n$ be independent random variables (with possibly different means and/or variances). Define

$$T = a_1 X_1 + a_2 X_2 + \ldots + a_n X_n$$

then the mean and the standard deviation of T can be computed by

A D N A 目 N A E N A E N A B N A C N

- $E(T) = a_1 E(X_1) + a_2 E(X_2) + \ldots + a_n E(X_n)$
- $Var(T) = a_1^2 Var(X_1) + a_2^2 Var(X_2) + \ldots + a_n^2 Var(X_n)$

Linear combination of normal random variables

Theorem

Let $X_1, X_2, ..., X_n$ be independent normal random variables (with possibly different means and/or variances). Then

$$T = a_1 X_1 + a_2 X_2 + \ldots a_n X_n$$

A D N A 目 N A E N A E N A B N A C N

also follows the normal distribution with

- $E(T) = a_1 E(X_1) + a_2 E(X_2) + \ldots + a_n E(X_n)$
- $Var(T) = a_1^2 Var(X_1) + a_2^2 Var(X_2) + \ldots + a_n^2 Var(X_n)$

Mean and variance of the sample mean

Theorem

Given independent random samples $X_1, X_2, ..., X_n$ from a distribution with mean μ and standard deviation σ , the mean is modeled by a random variable \bar{X} ,

$$\bar{X} = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

Then

$$E[\bar{X}] = \mu$$

and

$$Var(\bar{X}) = \frac{\sigma^2}{n}$$

Law of large numbers

Let X_1, X_2, \ldots, X_n be a random sample from a distribution with mean μ and variance σ^2 . Then

$$\bar{X}
ightarrow \mu$$

as *n* approaches infinity

人口 医水黄 医水黄 医水黄素 化甘油

The Central Limit Theorem

Theorem

Let $X_1, X_2, ..., X_n$ be a random sample from a distribution with mean μ and variance σ^2 . Then, in the limit when $n \to \infty$, the standardized version of \overline{X} have the standard normal distribution

$$\lim_{n\to\infty} \mathbb{P}\left(\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \le z\right) = \mathbb{P}[Z \le z] = \Phi(z)$$

Rule of Thumb:

If n > 30, the Central Limit Theorem can be used for computation.

Example

Problem

Let $X_1, X_2, ..., X_{64}$ be a random sample from a distribution with population mean $\mu = 1$ and standard deviation $\sigma = 2$. Let \overline{X} be the sample mean

$$ar{X} = rac{X_1 + X_2 + \ldots + X_{64}}{64}$$

Compute $P[\bar{X} \le 1.49]$

 $\Phi(z)$

					100 C				1	
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9278	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997

≣▶ ≣ のへの

Example

Problem

When a batch of a certain chemical product is prepared, the amount of a particular impurity in the batch is a random variable with mean value 4.0 g and standard deviation 1.5 g.

If 50 batches are independently prepared, what is the (approximate) probability that the sample average amount of impurity is between 3.5 and 3.8 g?

Confidence Intervals

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

A good prediction comes with a range

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A good prediction comes with a range

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A 70% confidence region of the path of a hurricane.

Confidence

- Assume that you have been using an AI to predict the stock price of Microsoft every day in the last few years
- The prediction comes as a range, e.g., [295, 305]
- The algorithm, on average, is correct 95 out of 100 days
- Then we say that a prediction from this AI has a confidence of 95%

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Confidence interval: Example 1

Problem

Suppose the sediment density (g/cm) of a randomly selected specimen from a certain region is normally distributed with mean μ (unknown) and standard deviation $\sigma = 0.85$. A random sample of n = 25 specimens is selected with sample average \bar{X} . Find a number c such that

$$P\left[-c < rac{ar{X}-\mu}{\sigma/\sqrt{n}} < c
ight] = 0.95$$

Confidence interval

We have

$$P\left[-1.96 < rac{ar{X}-\mu}{\sigma/\sqrt{n}} < 1.96
ight] = 0.95$$

• Rearranging the inequalities gave

$$P\left[ar{X} - 1.96rac{\sigma}{\sqrt{n}} \le \mu \le ar{X} + 1.96rac{\sigma}{\sqrt{n}}
ight] = 0.95$$

• This means that if you use

$$\left[ar{X}-1.96rac{\sigma}{\sqrt{n}},ar{X}+1.96rac{\sigma}{\sqrt{n}}
ight]$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

as a range to estimate $\mu,$ then you are correct 95% of the time.

Normal distribution with know σ

Using

$$\left[ar{X}-1.96rac{\sigma}{\sqrt{n}},ar{X}+1.96rac{\sigma}{\sqrt{n}}
ight]$$

as a range to estimate μ is correct 95% of the time.

• If after observing $X_1 = x_1$, $X_2 = x_2$,..., $X_n = x_n$, we compute the observed sample mean \bar{x} . Then

$$\left(ar{x}-1.96rac{\sigma}{\sqrt{n}},ar{x}+1.96rac{\sigma}{\sqrt{n}}
ight)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

is a 95% confidence interval of μ

z-critical value

NOTATION z_{α} will denote the value on the measurement axis for which α of the area under the z curve lies to the right of z_{α} . (See Figure 4.19.)

For example, $z_{.10}$ captures upper-tail area .10 and $z_{.01}$ captures upper-tail area .01.

Figure 4.19 z_{α} notation illustrated

Since α of the area under the standard normal curve lies to the right of z_{α} , $1 - \alpha$ of the area lies to the left of z_{α} . Thus z_{α} is the $100(1 - \alpha)$ th percentile of the standard normal distribution. By symmetry the area under the standard normal curve to the left of $-z_{\alpha}$ is also α . The z_{α} 's are usually referred to as **z critical values**. Table 4.1 lists the most useful standard normal percentiles and z_{α} values.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $100(1-\alpha)\%$ confidence interval

Figure 8.4 $P(-z_{\alpha/2} \le Z \le z_{\alpha/2}) = 1 - \alpha$

$100(1-\alpha)\%$ confidence interval

A 100(1 – α)% confidence interval for the mean μ of a normal population when the value of σ is known is given by

$$\left(\bar{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right)$$
(8.5)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

or, equivalently, by $\bar{x} \pm z_{\alpha/2} \cdot \sigma / \sqrt{n}$.

Interpreting confidence intervals

95% confidence interval: If we repeat the experiment many times, the interval contains μ about 95% of the time

Interpreting confidence intervals

Writing

$$P[\mu \in (ar{X} - 1.7, ar{X} + 1.7)] = 95\%$$

is okay.

• If
$$\bar{x} = 2.7$$
, writing

$$P[\mu \in (1, 4.4)] = 95\%$$

is NOT correct.

- Saying $\mu \in (1, 4.4)$ with confidence level 95% is good.
- Saying "if we repeat the experiment many times, the interval contains μ about 95% of the time" is perfect.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example

Example

Assume that the helium porosity (in percentage) of coal samples taken from any particular seam is normally distributed with true standard deviation $\sigma = .75$.

- Compute a 95% CI for the true average porosity of a certain seam if the average porosity for 20 specimens from the seam was 4.85.
- How large a sample size is necessary if the width of the 95% interval is to be .40?

One-sided Cls (Confidence bounds)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Example 1b: One-sided confidence interval

Problem

Suppose the sediment density (g/cm) of a randomly selected specimen from a certain region is normally distributed with mean μ (unknown) and standard deviation $\sigma = 0.85$. A random sample of n = 25 specimens is selected with sample average \bar{X} . Find a number b such that

$$P\left[rac{ar{X}-\mu}{\sigma/\sqrt{n}} < b
ight] = 0.95$$

Cls vs. one-sided Cls

Cls:

• $100(1-\alpha)\%$ confidence

$$\left(\bar{x}-z_{\alpha/2}rac{s}{\sqrt{n}},\bar{x}+z_{\alpha/2}rac{s}{\sqrt{n}}
ight)$$

• 95% confidence

$$\left(ar{x}-1.96rac{s}{\sqrt{n}},ar{x}+1.96rac{s}{\sqrt{n}}
ight)$$

One-sided Cls:

• $100(1-\alpha)\%$ confidence

$$\left(-\infty,\bar{x}+z_{\alpha}\frac{s}{\sqrt{n}}\right)$$

$$\left(-\infty, \bar{x} + 1.64 \frac{s}{\sqrt{n}}\right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ