MATH 205: Statistical methods

November 29th, 2021

Lecture 22: Linear regression (cont.)

MATH 205: Statistical methods

- Homework 5 due on Wednesday, 12/01 (11:59 pm)
- Final exam:

12/13/2021, Monday 3:30PM - 5:30PM Kirkbride Hall Room 205

- Plan for the next two weeks
 - Other topics of the syllabus: Linear regression and Analysis of Variance
 - Review of materials + Practice exam
- There will be no lab for the rest of the semester

Linear regression

MATH 205: Statistical methods

イロト イヨト イヨト イヨト

æ

Linear regression

Mathematical model:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

Linear regression

MATH 205: Statistical methods

포 🛌 포

- Regression to Make Predictions
 - \rightarrow You already knew how to do this!
- Regression to spot trends \rightarrow Are you sure that $\beta_1 \neq 0$?

Procedure 2.1 (Predicting a Value Using Correlation) Assume we have *N* data items which are 2-vectors $(x_1, y_1), \ldots, (x_N, y_N)$, where N > 1. These could be obtained, for example, by extracting components from larger vectors. Assume we have an *x* value x_0 for which we want to give the best prediction of a *y* value, based on this data. The following procedure will produce a prediction:

· Transform the data set into standard coordinates, to get

$$\begin{split} \hat{x}_i &= \frac{1}{\text{std}(x)} (x_i - \text{mean}(\{x\})) \\ \hat{y}_i &= \frac{1}{\text{std}(y)} (y_i - \text{mean}(\{y\})) \\ \hat{x}_0 &= \frac{1}{\text{std}(x)} (x_0 - \text{mean}(\{x\})). \end{split}$$

· Compute the correlation

$$r = \operatorname{corr}(\{(x, y)\}) = \operatorname{mean}(\{\hat{x}\hat{y}\}).$$

- Predict ŷ₀ = r̂x₀.
- · Transform this prediction into the original coordinate system, to get

$$y_0 = \text{std}(y)r\hat{x}_0 + \text{mean}(\{y\})$$

MATH 205: Statistical methods

< ロ > < 同 > < 三 > < 三 > 、

Assumption

• x_1, x_2, \ldots, x_n are fixed design points (non-random)

2 Linear model:

 $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$

where $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$ are random sample from $\mathcal{N}(0, \sigma^2)$ Solution Let assume (for now), that σ is known

We want to make inferences about the trend, so β_1 is important

Estimate β_1

The true value of β_1 will be estimated by

$$\hat{eta}_1 = rac{\sum (x_i - ar{x})(Y_i - ar{Y})}{\sum (x_i - x)^2}$$

We first note that

$$\sum (x_i - \bar{x})\bar{Y} = \bar{Y} \cdot \sum x_i - \bar{x} = 0$$

We can write $\hat{\beta}_1$ as

$$\hat{\beta}_1 = \frac{\sum (x_i - \bar{x}) Y_i}{\sum (x_i - x)^2}$$

thus $\hat{\beta}_1$ is a linear combination of independent normal random variables

We have

$$\hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(Y_i - \bar{Y})}{\sum (x_i - x)^2} = \frac{\sum (x_i - \bar{x})Y_i}{\sum (x_i - x)^2}$$

where

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

thus $\hat{\beta}_1$ is a linear combination of independent normal random variables $Y_i.$

Tasks:

- What are $E[Y_i]$ and $Var(Y_i)$ in terms of x_i , β_0 and β_1 ?
- What are $E[\bar{Y}]$ in terms of \bar{x} , β_0 and β_1 ?
- What are $E[\hat{\beta}_1]$ and $Var[\hat{\beta}_1]$ in terms of β_0 , β_1 and x_i 's.

Problem

We have

$$\frac{\hat{\beta} - \beta_1}{\sigma / \sqrt{S_{xx}}}$$

follows standard normal distribution, where

$$S_{xx} = \sum_{i=1}^n (x_i - \bar{x})^2$$

Use this to construct a 95% confidence interval of β_1 .

Theorem

If we define

$$5^{2} = \frac{\sum [Y_{i} - (\hat{\beta}_{0} + \hat{\beta}_{1}x_{i})]^{2}}{n-2}$$

then the random variable

$$\frac{\hat{\beta}_1 - \beta_1}{S/\sqrt{S_{xx}}}$$

follows the t-distribution with degrees of freedom (n-2).

MATH 205: Statistical methods

• = • •

A 100(1 – α)% **CI for the slope** β_1 of the true regression line is $\hat{\beta}_1 \pm t_{\alpha/2,n-2} \cdot s_{\hat{\beta}_1}$

Note: When n > 40, $t_{\alpha/2,n-2} \approx z_{\alpha/2}$

(*) * 문 * * 문 * ...

Testing with β_1

MATH 205: Statistical methods

æ

β_1 characterizes relation between x and Y

Question: Does increase advertising expense help increase sales? \rightarrow Testing $H_0: \beta_1 = 0$ against $H_a: \beta_1 > 0$

Example

Is it possible to predict graduation rates from SAT scores?

Assume that

$$\hat{eta}_1=.08855$$
; $s=10.29$; $S_{xx}=704125$; $n=20.$

MATH 205: Statistical methods