MATH 205, Fall 2021
Instructor: Vu Dinh
Practice problem
October $25^{\text {th }}, 2021$
Time Limit: 75 Minutes

This exam contains 4 pages (including this cover page) and 3 problems. You are required to show your work on each problem on this exam. The following rules apply:

- Organize your work, in a reasonably neat and coherent way. Work scattered all over the page without a clear ordering will receive very little credit.
- Mysterious or unsupported answers will not receive full credit. A correct answer, unsupported by calculations/explanations will receive no credit; an incorrect answer supported by substantially correct calculations and explanations might still receive partial credit.

Problem	Points	Score
1	30	
2	20	
3	30	
Total:	80	

1. The amount of time that a patient spends in a certain outpatient surgery center is a normal random variable with a mean value of 4.5 (hours) and a standard deviation of 2 (hours). Let $X_{1}, X_{2}, \ldots, X_{20}$ be the times for a random sample of 20 patients.
(a) (10 points) What is the probability distribution of the sample mean

$$
\bar{X}=\frac{X_{1}+X_{2}+\ldots+X_{20}}{20}
$$

(b) (10 points) Compute $\mathbb{P}[\bar{X} \geq 5]$.
(c) (10 points) Compute

$$
\mathbb{P}\left[\frac{X_{1}+4 X_{2}}{5} \geq X_{3}\right]
$$

2. (20 points) An insurance company examines its pool of auto insurance customers and gathers the following information:
(i) All customers insure at least one car.
(ii) 70% of the customers insure more than one car.
(iii) 20% of the customers insure a sports car.
(iv) Of those customers who insure more than one car, 15% insure a sports car.

Calculate the probability that a randomly selected customer insures exactly one car and that car is not a sports car.
3. (a) (15 points) Problem 1: Let X be a discrete random variable with the following probability mass function table

$$
\begin{array}{c|ccc}
\mathrm{x} & 1 & 2 & 3 \\
\hline \mathrm{p}(\mathrm{x}) & 0.2 & 0.3 & 0.5
\end{array}
$$

Compute $\operatorname{Var}\left[2^{X}\right]$.
(b) (15 points) Assume that the joint probability of X (receive values 1, 2) and Y (receives values $1,2,3$) is represented by the following table

X	1	2	3
1	0.14	0.42	0.06
2	0.06	0.28	0.04

Compute $E\left(X^{2} Y\right)$.

