MATH205, Fall 2022, Homework 4. Due Friday, November 11th, 3:30 pm

Instructions

You can submit the homework either in paper or online

- Online: Take pictures of the written (theory) part; submit them (along with the simulation part) to me on Canvas before the lecture on Friday
- Paper: Print out the result of the simulation part and staple it with the written work; hand it in at the beginning of the lecture on Friday

Problems

1. Problem 1: Suppose the number of times a randomly selected customer of a large bank uses the bank's ATM during a particular period is a random variable with a mean value of 3.2 and a standard deviation of 2.4 . For 100 randomly selected customers, how likely is it that the sample mean number of times the bank's ATM is used exceeds 4 ?
2. Problem 2: There are 40 students in an elementary statistics class. On the basis of years of experience, the instructor knows that the time needed to grade a randomly chosen first examination paper is a random variable with an expected value of 6 min and a standard deviation of 6 min .
If grading times are independent and the instructor begins grading at 6:50 p.m. and grades continuously, what is the (approximate) probability that he finishes grading before the 11:00 p.m. TV news begins?
3. Problem 3: Let X equal the amount of orange juice (in grams per day) consumed by an American. Suppose it is known that the standard deviation of X is $\sigma=16$. To estimate the mean μ of X , an orange growers association took a random sample of $n=70$ Americans and found that they consumed, on the average, $\bar{x}=133$ grams of orange juice per day.

- Construct a 90% confidence interval for μ.
- Find a 90% one-sided confidence interval for μ that provides an upper bound for μ.

4. Let X be a continuous random variable with the following probability density function

$$
f(x)=\left\{\begin{array}{l}
\frac{3}{8} x^{2}, \text { for } x \in[0,2] \\
0 \text { otherwise }
\end{array}\right.
$$

(a) Compute (on paper) the population mean $E(X)$
(b) Simulate a dataset of $n=500$ random draws from the distribution. Construct the 95% confidence interval of the population mean from the dataset.
(c) Repeat part (b) $m=100$ times. Compute the percentage of times (denoted by p) the constructed confidence interval contains $E(X)$
(d) Repeat part (c) with

$$
m=200 ; 500 ; 1000 ; 2000 ; 5000 ; 10000 ; 20000
$$

Produce a plot of the percentage p vs. the number of intervals m.

