MATH 205: Statistical methods

Lab 9: Hypothesis testing

Hypothesis testing

In a hypothesis-testing problem, there are two contradictory hypotheses under consideration

- The null hypothesis, denoted by H_{0}, is the claim that is initially assumed to be true
- The alternative hypothesis, denoted by H_{a}, is the assertion that is contradictory to H_{0}.
- The null hypothesis will be rejected in favor of the alternative hypothesis only if sample evidence suggests that H_{0} is false.
- If the sample does not strongly contradict H_{0}, we will continue to believe in the probability of the null hypothesis.
- Null hypothesis

$$
H_{0}: \mu=\mu_{0}
$$

- The alternative hypothesis will be either:
- $H_{a}: \mu>\mu_{0}$
- $H_{a}: \mu<\mu_{0}$
- $H_{a}: \mu \neq \mu_{0}$

Note: μ_{0} here denotes a constant, and μ denotes the population mean (unknown)

- Q-Q plot
- Testing of the population mean: t-test
- Testing about the mean of two populations
- Testing about goodness of fit
- a Q-Q (quantile-quantile) plot is a probability plot for comparing two probability distributions by plotting their quantiles against each other
- If the two distributions being compared are similar, the points in the $Q-Q$ plot will approximately lie on the line $y=x$
- If the distributions are linearly related, the points in the $\mathrm{Q}-\mathrm{Q}$ plot will approximately lie on a line

2. Testing with a population mean

In the lecture, we consider two statistical settings

- Simplest setting
- Normal distribution
- σ is known
- Large-sample setting
- Normal distribution
\rightarrow use Central Limit Theorem \rightarrow needs $n>30$
- σ is known
\rightarrow replace σ by $s \rightarrow$ needs $n>40$
For both settings, we rely on the z-value

$$
z=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}} \quad \text { or } \quad z=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}
$$

\rightarrow z-tests

- If the null hypothesis $\mu=\mu_{0}$ is true, then $X_{i} \sim N\left(\mu_{0}, \sigma^{2}\right)$
- A sample would be more contradictory to the null hypothesis than the current sample we have if

$$
\bar{X} \leq \bar{x} \quad \text { or } \quad \frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}} \leq \frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}
$$

- Thus, the p -value in this case is

$$
P\left[Z \leq \frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}\right]=\Phi\left(\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}\right)
$$

P-values for z-tests

Figure 9.7 Determination of the P-value for a z test

t distributions

When \bar{X} is the mean of a random sample of size n from a normal distribution with mean μ, the rv

$$
\frac{\bar{x}-\mu}{S / \sqrt{n}}
$$

has the t distribution with $n-1$ degree of freedom (df).

- If we toss a die 150 times and find that we have the following distribution of rolls,

face	1	2	3	4	5	6
Number of rolls	22	21	22	27	22	36

Is the die fair?

- If the die is fair, the probability of each face should be the same or $1 / 6$. In 150 rolls then you would expect each face to have about 25 appearances. Yet the 6 appears 36 times. Is this coincidence or perhaps something else?

Idea: If we call f_{i} the frequency of category i, and e_{i} the expected count of category i, then the statistic

$$
\sum_{i=1}^{n} \frac{\left(f_{i}-e_{i}\right)^{2}}{e_{i}}
$$

follows χ^{2} distribution with degree of freedom $n-1$.

Chi-squared distribution

The pdf of a Chi-squared distribution with degree of freedom ν, denoted by χ_{ν}^{2}, is

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{2^{1 / 2} \Gamma(v / 2)} x^{(v / 2)-1} e^{-x / 2} & x>0 \\
0 & x \leq 0
\end{array}\right.
$$

Why is Chi-squared useful?

- If Z has standard normal distribution $\mathcal{Z}(0,1)$ and $X=Z^{2}$, then X has Chi-squared distribution with 1 degree of freedom, i.e. $X \sim \chi_{1}^{2}$ distribution.
- If $X_{1} \sim \chi_{\nu_{1}}^{2}, X_{2} \sim \chi_{\nu_{2}}^{2}$ and they are independent, then

$$
X_{1}+X_{2} \sim \chi_{\nu_{1}+\nu_{2}}^{2}
$$

- If $Z_{1}, Z_{2}, \ldots, Z_{n}$ are independent and each has the standard normal distribution, then

$$
Z_{1}^{2}+Z_{2}^{2}+\ldots+Z_{n}^{2} \sim \chi_{n}^{2}
$$

Example

- The letter distribution of the 5 most popular letters in the English language is known to be approximately

letter	E	T	N	R	O
freq.	29	21	17	17	16

That is when either E,T,N,R,O appear, on average 29 times out of 100 it is an E and not the other 4.

- Suppose a text is analyzed and the number of $\mathrm{E}, \mathrm{T}, \mathrm{N}, \mathrm{R}$ and O's are counted. The following distribution is found

letter	E	T	N	R	O
freq.	100	110	80	55	14

- Is this message likely to be written in English?

