MATH 205: Statistical methods

Lecture 7: Sample space, events, and probability

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Tentative schedule

Date	Theme/Topic	Labs	Assignments
Aug 31	Syllabus		
Sep 2-9	Chapter 1: Describing dataset	Section 2: Handling data	
Sep 12-16	Chapter 2: Looking at Relationships	Section 3: Univariate data	
Sep 19-23	Chapter 3: Basic Ideas in Probability	Section 4: Bivariate Data	Homework 1 (due 09/23)
Sep 26-30	Chapters 3-4	Section 4: Correlation	
Oct 3-7	Chapter 4: Random variables and expectations	Section 6: Random data	Homework 2 (due 10/07)
Oct 10-14	Chapter 5: Useful distributions	Section 7: The central limit theorem	
Oct 17-21	Chapter 6: Samples and populations	Section 9: Confidence interval estimation	Homework 3 (due 10/21)
Oct 24-28	Review Midterm exam		Midterm: Oct 28 (lecture) Oct 24-26 (labs)
Oct 31-Nov 4	Chapter 7: The significance of evidence	Section 10: Hypothesis testing	
Nov 7-11	Goodness of Fit	Section 12: Goodness of Fit	Homework 4 (due 11/11)
Nov 14-18	Linear Regression	Section 13: Linear regression	
Nov 21-25	Thanksgiving break		
Nov 28 - Dec 2	One-Way Analysis of Variance	Section 15: Analysis of variance	Homework 5 (due 12/02)
Dec 5-7	Selected topics + Review		
Exam week			

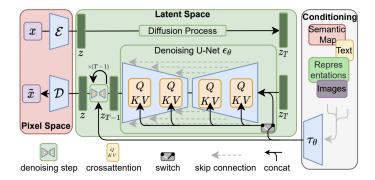
Topics

- Sample space and events
- Basic properties of probability
- Advanced properties of probability
- Compute probability
 - Computing event probabilities by counting outcomes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Computing probabilities by reasoning about sets

Stable diffusion



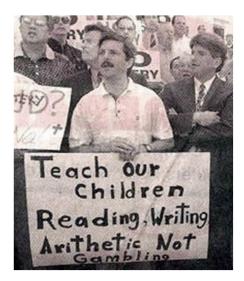
◆□→ ◆□→ ◆臣→ ◆臣→ □臣

Midjourney

Latent diffusion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Probability and gambling


Modern probability started when Pascal and Fermat discussed gambling

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Against teaching gambling

How to gamble (according to mathematicians)

- 1. Consider all possible outcomes
- 2. Assess how likely each outcome will happen
- 3. Choose the course of action that benefits you the most

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

4. Profit!

Sample space and events

- An experiment: is any action, process, or phenomenon whose outcome is subject to uncertainty
- An outcome: is a result of an experiment Each run of the experiment results in one outcome
- A sample space: is the set of all possible outcomes of an experiment
- An event: is a subset of the sample space.
 An event occurs when one of the outcomes that belong to it occurs

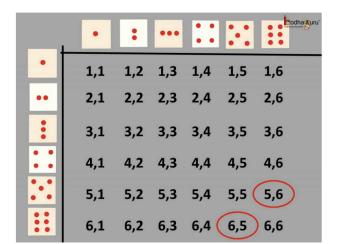
- Experiment: Toss a coin
- Outcome: either head (H) or tail (T)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- **3** Sample space: $\{H, T\}$
- Events: $\{H, T\}, \{H\}, \{T\}, \emptyset$

- Experiment: Toss a coin 2 times
- **2** Sample space: $\{HH, HT, TH, TT\}$
- **③** Events: There are 16 different events. Examples:
 - E_1 = the result of the two tosses are different = {HT, TH}

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで


• E_2 = the result of the second toss is head = {HH, TH}

- Experiment: Toss a regular dice
- Sample space: {1, 2, 3, 4, 5, 6}
- Some events
 - E_1 = the result is an even number = {2, 4, 6}
 - E_2 = the result is greater than 2= {3,4,5,6}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• $E_3 = \{1, 3, 5, 6\}$

- Experiment: Toss two regular dice
- 2 Event E_1 = the summation of the two dice is 11

Define probability

- Experiment: Toss a FAIR coin
- Outcome: either head (H) or tail (T), each with probability 0.5
- **3** Sample space: $\{H, T\}$
- Events: $\{H, T\}, \{H\}, \{T\}, \emptyset$

Oefine:

$$P[{H}] = P[{T}] = 1/2, P(\emptyset) = 0, P({H, T}) = 1$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Define probability

- Experiment: Toss a FAIR coin TWO times
- Outcome:

$$P({HH}) = P({HT}) = P({TH}) = P({TT}) = 1/4$$

- **3** Sample space: $\{HH, HT, TH, TT\}$
 - E_1 = the results of the two coins are different = {HT, TH}
 - E_2 = the result of the second coin is head = {HH, TH}

4 Thus

$$P[E_1] = P({HT}) + P({TH}) = 1/2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Define probability

- Experiment: Toss two regular dice
- 2 E_1 = the summation of the two dice is 11

$$P[E_1] = 1/18$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

Some fundamental questions

Probability is a function defined on the set of events of an experiment

1. What conditions should we impose to define probability?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Different views of probability

- Frequentist: The probability of an outcome is the frequency of that outcome in a very large number of repeated experiments
- Bayesian: Probability is a quantification of a belief about how often an outcomes occurs

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Different probabilities

- Given an experiment and a sample space, we can define many different probabilities
- Experiment: tossing a coin, $\Omega = \{H, T\}$
- If you believe the coin is fair:

$$P(\emptyset) = 0, P({H}) = 0.5, P({T}) = 0.5, P({H, T}) = 1.$$

• If you do not, then maybe

 $P(\emptyset) = 0, P({H}) = 0.7, P({T}) = 0.3, P({H, T}) = 1.$