MATH 205: Statistical methods

Lecture 7: Sample space, events, and probability



Tentative schedule

Date Theme/Topic Labs Assignments

Aug 31 Syllabus

Sep 2—9 Chapter 1: Describing dataset Section 2: Handling data

Sep 12—16 Chapter 2: Looking at Relationships Section 3: Univariate data

Sep 19—-23 Chapter 3: Basic Ideas in Probability Section 4: Bivariate Data Homework 1 (due 09/23)

Sep 26—30 Chapters 3-4 Section 4: Correlation

Oct 3—-7 Chapter 4: Random variables Section 6: Random data Homework 2 (due 10/07)

and expectations

Oct 10—14 Chapter 5: Useful distributions Section 7: The central limit theorem

Oct 17—21 Chapter 6: Samples and populations Section 9: Confidence interval estimation Homework 3 (due 10/21)

Oct 24—28 Review Midterm: Oct 28 (lecture)
Midterm exam Oct 24-26 (labs)

Oct 31—Nov 4 | Chapter 7: The significance of evidence = Section 10: Hypothesis testing

Nov 7—11 Goodness of Fit Section 12: Goodness of Fit Homework 4 (due 11/11)

Nov 14—18 Linear Regression Section 13: Linear regression

Nov 21-25 Thanksgiving break

Nov 28 —Dec 2 | One-Way Analysis of Variance Section 15: Analysis of variance Homework 5 (due 12/02)

Dec 5—7 Selected topics + Review

Exam week




Topics

Sample space and events
Basic properties of probability
Advanced properties of probability

Compute probability

® Computing event probabilities by counting outcomes
® Computing probabilities by reasoning about sets
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Probability and gambling

Modern probability started when Pascal and Fermat discussed
gambling
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How to gamble (according to mathematicians)

. Consider all possible outcomes

. Assess how likely each outcome will happen

. Choose the course of action that benefits you the most
. Profit!



Sample space and events

© An experiment: is any action, process, or phenomenon whose
outcome is subject to uncertainty

© An outcome: is a result of an experiment
Each run of the experiment results in one outcome

© A sample space: is the set of all possible outcomes of an
experiment

@ An event: is a subset of the sample space.
An event occurs when one of the outcomes that belong to it
occurs



Sample space and events: example

© Experiment: Toss a coin

@ Outcome: either head (H) or tail (T)
© Sample space: {H, T}

Q Events: {H, T}, {H}, {T}. 0



Sample space and events: example

© Experiment: Toss a coin 2 times
@ Sample space: {HH,HT,TH, TT}
© Events: There are 16 different events. Examples:

o E; = the result of the two tosses are different = {HT, TH}
o E; = the result of the second toss is head= {HH, TH}



Sample space and events: example

© Experiment: Toss a regular dice
@ Sample space: {1,2,3,4,5,6}
© Some events

o E; = the result is an even number = {2, 4,6}
o E, = the result is greater than 2= {3,4,5,6}
o E5 ={1,3,5,6}



Sample space and events: example

© Experiment: Toss two regular dice
@ Event E; = the summation of the two dice is 11

DA



Define probability

© Experiment: Toss a FAIR coin

@ Outcome: either head (H) or tail (T), each with probability
0.5

© Sample space: {H, T}
Q Events: {H, T}, {H}, {T}, 0
@ Define:

P[{H}] = P[{T}] =1/2,P(0) =0,P({H, T}) = 1



Define probability

© Experiment: Toss a FAIR coin TWO times
@ Outcome:

P({HH}) = P({HT}) = P({TH}) = P({TT}) = 1/4

© Sample space: {HH,HT, TH, TT}

o E; = the results of the two coins are different = {HT, TH}
o E, = the result of the second coin is head= {HH, TH}

Q Thus
P[Ei] = P{HT}) + P({TH}) =1/2



Define probability

© Experiment: Toss two regular dice
@ E; = the summation of the two dice is 11

P[Ey] = 1/18

E DA



Some fundamental questions

Probability is a function defined on the set of events of an
experiment

1. What conditions should we impose to define probability?



Different views of probability

® Frequentist: The probability of an outcome is the frequency of
that outcome in a very large number of repeated experiments

® Bayesian: Probability is a quantification of a belief about how
often an outcomes occurs



Different probabilities

Given an experiment and a sample space, we can define many
different probabilities

Experiment: tossing a coin, Q = {H, T}

If you believe the coin is fair:
P0)=0, P({H})=05 P({T})=05 P(H{H T}) =1
If you do not, then maybe

P(®) =0, P({H})=0.7, P({T})=03, P{H,T})=1



