MATH 205: Statistical methods

Lecture 7: Sample space, events, and probability

Tentative schedule

Date	Lheme/Topic		Assignments
Aug 31	Syllabus	Section 2: Handling data	
Sep 2-9	Chapter 1: Describing dataset	Section 3: Univariate data	
Sep 12-16	Chapter 2: Looking at Relationships	Section 4: Bivariate Data	Homework 1 (due 09/23)
Sep 19-23	Chapter 3: Basic Ideas in Probability	Section 4: Correlation	
Sep 26-30	Chapters 3-4	Section 6: Random data	Homework 2 (due 10/07)
Oct 3-7	Chapter 4: Random variables		
and expectations	Section 7: The central limit theorem		
Oct 10-14	Chapter 5: Useful distributions	Section 9: Confidence interval estimation	Homework 3 (due 10/21)
Oct 17-21	Chapter 6: Samples and populations	Midterm: Oct 28 (lecture)	
Oct 24-26 (labs)			
Oct 24-28	Review Midterm exam	Section 12: Goodness of Fit	Homework 4 (due 11/11)
Oct 31-Nov 4	Chapter 7: The significance of evidence	Section 10: Hypothesis testing	
Nov 7-11	Goodness of Fit	Section 13: Linear regression	
Nov 14-18	Linear Regression		Homework 5 (due 12/02)
Nov 21-25	Thanksgiving break	Section 15: Analysis of variance	
Nov 28 -Dec 2	One-Way Analysis of Variance		
Dec 5-7	Selected topics + Review		
Exam week			

Topics

- Sample space and events
- Basic properties of probability
- Advanced properties of probability
- Compute probability
- Computing event probabilities by counting outcomes
- Computing probabilities by reasoning about sets

Stable diffusion

Midjourney

Latent diffusion

Probability and gambling

Modern probability started when Pascal and Fermat discussed gambling

Against teaching gambling

How to gamble (according to mathematicians)

1. Consider all possible outcomes
2. Assess how likely each outcome will happen
3. Choose the course of action that benefits you the most
4. Profit!

Sample space and events

(1) An experiment: is any action, process, or phenomenon whose outcome is subject to uncertainty
(2) An outcome: is a result of an experiment Each run of the experiment results in one outcome
(3) A sample space: is the set of all possible outcomes of an experiment
(9) An event: is a subset of the sample space. An event occurs when one of the outcomes that belong to it occurs

Sample space and events: example

(1) Experiment: Toss a coin
(2) Outcome: either head (H) or tail (T)
(3) Sample space: $\{H, T\}$
(0) Events: $\{H, T\},\{H\},\{T\}, \emptyset$

Sample space and events: example

(1) Experiment: Toss a coin 2 times
(2) Sample space: $\{H H, H T, T H, T T\}$
(3) Events: There are 16 different events. Examples:

- $E_{1}=$ the result of the two tosses are different $=\{H T, T H\}$
- $E_{2}=$ the result of the second toss is head $=\{H H, T H\}$

Sample space and events: example

(1) Experiment: Toss a regular dice
(2) Sample space: $\{1,2,3,4,5,6\}$
(3) Some events

- $E_{1}=$ the result is an even number $=\{2,4,6\}$
- $E_{2}=$ the result is greater than $2=\{3,4,5,6\}$
- $E_{3}=\{1,3,5,6\}$

Sample space and events: example

(1) Experiment: Toss two regular dice
(2) Event $E_{1}=$ the summation of the two dice is 11

Define probability

(1) Experiment: Toss a FAIR coin
(2) Outcome: either head (H) or tail (T), each with probability 0.5
(3) Sample space: $\{H, T\}$
(1) Events: $\{H, T\},\{H\},\{T\}, \emptyset$
(5) Define:

$$
P[\{H\}]=P[\{T\}]=1 / 2, P(\emptyset)=0, P(\{H, T\})=1
$$

Define probability

(1) Experiment: Toss a FAIR coin TWO times
(2) Outcome:

$$
P(\{H H\})=P(\{H T\})=P(\{T H\})=P(\{T T\})=1 / 4
$$

(3) Sample space: $\{H H, H T, T H, T T\}$

- $E_{1}=$ the results of the two coins are different $=\{H T, T H\}$
- $E_{2}=$ the result of the second coin is head $=\{H H, T H\}$
(1) Thus

$$
P\left[E_{1}\right]=P(\{H T\})+P(\{T H\})=1 / 2
$$

Define probability

(1) Experiment: Toss two regular dice
(2) $E_{1}=$ the summation of the two dice is 11

$$
P\left[E_{1}\right]=1 / 18
$$

Some fundamental questions

Probability is a function defined on the set of events of an experiment

1. What conditions should we impose to define probability?

Different views of probability

- Frequentist: The probability of an outcome is the frequency of that outcome in a very large number of repeated experiments
- Bayesian: Probability is a quantification of a belief about how often an outcomes occurs

Different probabilities

- Given an experiment and a sample space, we can define many different probabilities
- Experiment: tossing a coin, $\Omega=\{H, T\}$
- If you believe the coin is fair:
$P(\emptyset)=0, \quad P(\{H\})=0.5, \quad P(\{T\})=0.5, \quad P(\{H, T\})=1$.
- If you do not, then maybe
$P(\emptyset)=0, \quad P(\{H\})=0.7, \quad P(\{T\})=0.3, \quad P(\{H, T\})=1$.

