MATH 205: Statistical methods

Lecture 11: Independence

Tentative schedule

Date	Lheme/Topic		Assignments
Aug 31	Syllabus	Section 2: Handling data	
Sep 2-9	Chapter 1: Describing dataset	Section 3: Univariate data	
Sep 12-16	Chapter 2: Looking at Relationships	Section 4: Bivariate Data	Homework 1 (due 09/23)
Sep 19-23	Chapter 3: Basic Ideas in Probability	Section 4: Correlation	
Sep 26-30	Chapters 3-4	Section 6: Random data	Homework 2 (due 10/07)
Oct 3-7	Chapter 4: Random variables		
and expectations	Section 7: The central limit theorem		
Oct 10-14	Chapter 5: Useful distributions	Section 9: Confidence interval estimation	Homework 3 (due 10/21)
Oct 17-21	Chapter 6: Samples and populations	Midterm: Oct 28 (lecture)	
Oct 24-26 (labs)			
Oct 24-28	Review Midterm exam	Section 12: Goodness of Fit	Homework 4 (due 11/11)
Oct 31-Nov 4	Chapter 7: The significance of evidence	Section 10: Hypothesis testing	
Nov 7-11	Goodness of Fit	Section 13: Linear regression	
Nov 14-18	Linear Regression		Homework 5 (due 12/02)
Nov 21-25	Thanksgiving break	Section 15: Analysis of variance	
Nov 28 -Dec 2	One-Way Analysis of Variance		
Dec 5-7	Selected topics + Review		
Exam week			

Chapter 3: Basic ideas in probability

- Experiments ,outcomes, events, and probability.
- Independence
- Conditional probability

Independence

Independence

- Some experimental results do not affect others
- Example: if I flip a coin twice, whether I get heads on the first flip has no effect on whether I get heads on the second flip
- We refer to events with this property as independent.

Independence

Definition
Two events A and B are independent if and only if

$$
P(A \cap B)=P(A) P(B)
$$

Dependent events: example

Toss a fair dice:

- A: the event that the die comes up with an odd number of spots
- B : the event that the number of spots is larger than 3 .
- $P(A)=P(B)=1 / 2$
- If we know that A has occurred, then we know the die shows either 1,3 , or 5 spots. One of these outcomes belongs to B, and two do not. $P(A \cap B)=1 / 6$.
- This means that knowing that A has occurred tells you something about whether B has occurred.
\rightarrow These events are interrelated.

Independence: example

Problem

A red die and a white die are rolled. Let event

$$
A=\{4 \text { on the red die }\}
$$

and event

$$
B=\{\text { sum of dice is odd }\} .
$$

Show that A and B are independent.

Independence

Problem
Prove that if A and B are independent, then A and B^{c} are independent as well.

Independence

Problem
Prove that if A and B are mutually exclusive events, and $P(A)>0, P(B)>0$, then they are dependent.

Independence

Problem If $P(A)=0.5, P(B)=0.2$ and $P(A \cup B)=0.65$. Are A and B independent?

Independence

Problem

I search a DNA database with a sample. Each time I attempt to match this sample to an entry in the database, there is a probability of an accidental chance match of 10^{-4}. Chance matches are independent. There are 20,000 people in the database. What is the probability I get at least one match, purely by chance?

