MATH 205: Statistical methods

Lecture 12: Bayes' rule

Tentative schedule

Date	Lheme/Topic		Assignments
Aug 31	Syllabus	Section 2: Handling data	
Sep 2-9	Chapter 1: Describing dataset	Section 3: Univariate data	
Sep 12-16	Chapter 2: Looking at Relationships	Section 4: Bivariate Data	Homework 1 (due 09/23)
Sep 19-23	Chapter 3: Basic Ideas in Probability	Section 4: Correlation	
Sep 26-30	Chapters 3-4	Section 6: Random data	Homework 2 (due 10/07)
Oct 3-7	Chapter 4: Random variables		
and expectations	Section 7: The central limit theorem		
Oct 10-14	Chapter 5: Useful distributions	Section 9: Confidence interval estimation	Homework 3 (due 10/21)
Oct 17-21	Chapter 6: Samples and populations	Midterm: Oct 28 (lecture)	
Oct 24-26 (labs)			
Oct 24-28	Review Midterm exam	Section 12: Goodness of Fit	Homework 4 (due 11/11)
Oct 31-Nov 4	Chapter 7: The significance of evidence	Section 10: Hypothesis testing	
Nov 7-11	Goodness of Fit	Section 13: Linear regression	
Nov 14-18	Linear Regression		Homework 5 (due 12/02)
Nov 21-25	Thanksgiving break	Section 15: Analysis of variance	
Nov 28 -Dec 2	One-Way Analysis of Variance		
Dec 5-7	Selected topics + Review		
Exam week			

Chapter 3: Basic ideas in probability

- Experiments, outcomes, events, and probability
- Independence
- Conditional probability

Conditional probability

Definition

Let $P(A)>0$, the conditional probability of B given A, denoted by $P(B \mid A)$, is

$$
P(B \mid A)=\frac{P(B \cap A)}{P(A)}
$$

Law of multiplication

$$
P(B \cap A)=P(B \mid A) P(A)
$$

Problem

We throw two fair six-sided dice. What is the conditional probability that the sum of spots on both dice is greater than six, conditioned on the event that the first die comes up five?

Properties

- Law of multiplication

$$
P(B \cap A)=P(B \mid A) P(A)
$$

- Law of total probability

$$
P(A)=P(A \mid B) P(B)+P\left(A \mid B^{c}\right) P\left(B^{c}\right)
$$

- Bayes’ rule

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
$$

Law of total probability

Useful Facts 3.3 (Conditional Probability Formulas)

You should remember the following formulas:

- $P(\mathcal{B} \mid \mathcal{A})=\frac{P(\mathcal{A} \mid \mathcal{B}) P(\mathcal{B})}{P(\mathcal{A})}$
- $P(\mathcal{A})=P(\mathcal{A} \mid \mathcal{B}) P(\mathcal{B})+P\left(\mathcal{A} \mid \mathcal{B}^{c}\right) P\left(\mathcal{B}^{c}\right)$
- Assume (a) $\mathcal{B}_{i} \cap \mathcal{B}_{j}=\varnothing$ for $i \neq j$ and (b) $\mathcal{A} \cap\left(\cup_{i} \mathcal{B}_{i}\right)=\mathcal{A}$; then $P(\mathcal{A})=\sum_{i} P\left(\mathcal{A} \mid \mathcal{B}_{i}\right) P\left(\mathcal{B}_{i}\right)$

Law of total probability

$$
P(A)=P(A \mid B) P(B)+P\left(A \mid B^{c}\right) P\left(B^{c}\right)
$$

Problem

An insurance company rents 35% of the cars for its customers from agency I and 65\% from agency II. We also know that 8\% of the cars of agency I and 5\% of the cars of agency II break down during the rental periods.
What is the probability that a car rented by this insurance company breaks down?

Example

Bayes' rule

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
$$

Problem

An insurance company rents 35% of the cars for its customers from agency I and 65% from agency II. We also know that 8% of the cars of agency I and 5\% of the cars of agency II break down during the rental periods.
Assuming that a randomly selected car broke down, what is the probability that this car is from agency I?

A Pap smear is a procedure used to detect cervical cancer. For women with this cancer, there are about 16% false negatives:

$$
\begin{aligned}
& P[\text { test negative } \mid \text { patient has cancer }]=0.16 \\
& P[\text { test positive } \mid \text { patient has cancer }]=0.84
\end{aligned}
$$

For women without cancer, there are about 10% false positives:
P [test positive|patient does not have cancer] $=0.10$
P [test negative|patient does not have cancer] $=0.90$
In the United States, there are about 8 women in 100,000 who have this cancer. Assume that a woman is taking the test. Given that the test is positive, what is the probability that she has cervical cancer?

