MATH 205: Statistical methods

Lecture 14: Random variables

Tentative schedule

Date	Theme/Topic	Labs	Assignments
Aug 31	Syllabus		
Sep 2-9	Chapter 1: Describing dataset	Section 2: Handling data	
Sep 12-16	Chapter 2: Looking at Relationships	Section 3: Univariate data	
Sep 19-23	Chapter 3: Basic Ideas in Probability	Section 4: Bivariate Data	Homework 1 (due 09/23)
Sep 26-30	Chapters 3-4	Section 4: Correlation	
Oct 3-7	Chapter 4: Random variables and expectations	Section 6: Random data	Homework 2 (due 10/07)
Oct 10-14	Chapter 5: Useful distributions	Section 7: The central limit theorem	
Oct 17-21	Chapter 6: Samples and populations	Section 9: Confidence interval estimation	Homework 3 (due 10/21)
Oct 24-28	Review Midterm exam		Midterm: Oct 28 (lecture) Oct 24-26 (labs)
Oct 31-Nov 4	Chapter 7: The significance of evidence	Section 10: Hypothesis testing	
Nov 7-11	Goodness of Fit	Section 12: Goodness of Fit	Homework 4 (due 11/11)
Nov 14-18	Linear Regression	Section 13: Linear regression	
Nov 21-25	Thanksgiving break		
Nov 28 -Dec 2	One-Way Analysis of Variance	Section 15: Analysis of variance	Homework 5 (due 12/02)
Dec 5-7	Selected topics + Review		
Exam week			

Announcements

- There will be a quiz in class this Wednesday. The quiz covers the materials of Chapter 3
- There is no lab this Wednesday (only applies to students in Wednesday section)
- Countdown to midterm exam: 25 days

Review: Basic ideas in probability

Basic ideas in probability

3.1 Sample space, events
3.2 Probability
3.3 Independence
3.4 Conditional probability

Sample space and events

(1) An experiment: is any action, process, or phenomenon whose outcome is subject to uncertainty
(2) An outcome: is a result of an experiment Each run of the experiment results in one outcome
(3) A sample space: is the set of all possible outcomes of an experiment
(9) An event: is a subset of the sample space. An event occurs when one of the outcomes that belong to it occurs

Properties of probability

Useful Facts 3.2 (Properties of the Probability of Events)

- $P\left(\mathcal{A}^{c}\right)=1-P(\mathcal{A})$
- $P(\varnothing)=0$
- $P(\mathcal{A}-\mathcal{B})=P(\mathcal{A})-P(\mathcal{A} \cap \mathcal{B})$
- $P(\mathcal{A} \cup \mathcal{B})=P(\mathcal{A})+P(\mathcal{B})-P(\mathcal{A} \cap \mathcal{B})$
- If $A \subset B$, then $P(A) \leq P(B)$.
- For any events A, B

$$
P(A)=P(A \cap B)+P\left(A \cap B^{c}\right)
$$

Independence

Definition
Two events A and B are independent if and only if

$$
P(A \cap B)=P(A) P(B)
$$

Conditional probability

Definition

Let $P(A)>0$, the conditional probability of B given A, denoted by $P(B \mid A)$, is

$$
P(B \mid A)=\frac{P(B \cap A)}{P(A)}
$$

Properties of conditional probability

- Law of multiplication

$$
P(B \cap A)=P(B \mid A) P(A)
$$

- Bayes' rule

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
$$

- Law of total probability

$$
P(A)=P(A \mid B) P(B)+P\left(A \mid B^{c}\right) P\left(B^{c}\right)
$$

Example

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
$$

Problem

An insurance company rents 35% of the cars for its customers from agency I and 65\% from agency II. If 8\% of the cars of agency I and 5% of the cars of agency II break down during the rental periods, what is the probability that a car rented by this insurance company breaks down?
Question: Assuming that a randomly selected car broke down, what is the probability that this car is from agency I?

Example

Problem

You have a blood test for a rare disease that occurs by chance in 1 person in 100,000. If you have the disease, the test will report that you do with probability 0.95 (and that you do not with probability 0.05). If you do not have the disease, the test will report a false positive with probability 1e-3. If the test says you do have the disease, what is the probability that you actually have the disease?

Conditional probability for independent events

Useful Facts 3.4 (Conditional Probability for Independent Events)
If two events \mathcal{A} and \mathcal{B} are independent, then

$$
P(\mathcal{A} \mid \mathcal{B})=P(\mathcal{A})
$$

and

$$
P(\mathcal{B} \mid \mathcal{A})=P(\mathcal{B}) .
$$

Chapter 4: Random variables and expectations

Random variables and expectations

4.1 Random variables
4.2 Expectations
4.3 The Weak Law of Large Numbers

Random variable

Definition

Given an experiment with sample space Ω, set of events \mathcal{F} and probability P, a real-valued function $X: \Omega \rightarrow \mathbb{R}$ is called a random variable of the experiment.
(This means that for any outcome ω there is a number $X(\omega)$)

Random variable: example

Example (Numbers from Coins)

We flip a coin. Whenever the coin comes up heads, we report 1 ; when it comes up tails, we report 0 . This is a random variable.

Random variable: examples

Example

We flip a biased coin two times. The flips are independent. The coin has $P(H)=0.7$ and $P(T)=0.3$. We record a 1 when it comes up heads, and when it comes up tails, we record a 0 . What are the possible values of the outcomes?

Random variables

Notations:

- random variables are denoted by uppercase letters (e.g., X);
- the observed values of the random variables are denoted by lowercase letters (e.g., x)

Discrete random variable

Definition

A random variables X is discrete if the set of all possible values of X

- is finite
- is countably infinite

Note: A set A is countably infinite if its elements can be put in one-to-one correspondence with the set of natural numbers, i.e, we can index the element of A as a sequence

$$
A=\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}
$$

Discrete random variable

Definition (Probability Distribution of a Discrete Random Variable)
The probability distribution of a discrete random variable is the set of numbers $P(X=x)$ or each value x that X can take. The distribution takes the value 0 at all other numbers. Notice that the distribution is non-negative. The probability distribution is also known as the probability mass function.

Represent the probability mass function

- As a table

x	1	2	3	4	5	6	7
$p(x)$.01	.03	.13	.25	.39	.17	.02

- As a function:

$$
p(x)= \begin{cases}\frac{1}{2}\left(\frac{2}{3}\right)^{x} & \text { if } x=1,2,3, \ldots \\ 0 & \text { elsewhere }\end{cases}
$$

Example

Example

We flip a biased coin two times. The flips are independent. The coin has $P(H)=0.7$ and $P(T)=0.3$. We record a 1 when it comes up heads, and when it comes up tails, we record a 0 . What is the probability distribution of the sum of the outcomes of the flips?

Example

Let X be a random variable with the following distribution

x	1	2	3	4	5	6	7
$p(x)$.01	.03	.13	.25	.39	.17	.02

Compute

- $P[X \geq 4]$
- $P\left[X^{2} \geq 27\right]$
- $P\left[X^{2}-7 X+10>0\right]$

