MATH 205: Statistical methods

Lecture 19: Linear combinations of random variables

Multivariate distributions

Joint probability

Definition 4.4 (Joint Probability Distribution of Two Discrete Random Variables) Assume we have two random variables X and Y. The probability that X takes the value x and Y takes the value y could be written as $P(\{X=x\} \cap$ $\{Y=y\})$. It is more usual to write it as

$$
P(x, y)
$$

This is referred to as the joint probability distribution of the two random variables (or, quite commonly, the joint). You can think of this as a table of probabilities, one for each possible pair of x and y values.

Marginal probability

Definition 4.6 (Marginal Probability of a Random Variable) Write $P(x, y)$ for the joint probability distribution of two random variables X and Y. Then

$$
P(x)=\sum_{y} P(x, y)=\sum_{y} P(\{X=x\} \cap\{Y=y\})=P(\{X=x\})
$$

is referred to as the marginal probability distribution of X.

Independent variables

Definition 4.7 (Independent Random Variables) The random variables X and Y are independent if the events $\{X=x\}$ and $\{Y=y\}$ are independent for all values x and y. This means that

$$
P(\{X=x\} \cap\{Y=y\})=P(\{X=x\}) P(\{Y=y\}),
$$

which we can rewrite as

$$
P(x, y)=P(x) P(y)
$$

Example

Example

Measurements for the length and width of rectangular plastic covers for CDs are rounded to the nearest mm. Let X denote the length and Y denote the width. Assume that the joint probability of X and Y is represented by the following table

x=length			
129 130 131 15 0.12 0.42 0.06 16 0.08 0.28 0.04			

Are X and Y independent?

Expected value: multivariate

Given two discrete random variable X, Y and f is a function of (X, Y). Then $f(X, Y)$ is a also discrete random variable, and

$$
\mathbb{E}[f(X, Y)]=\sum_{x, y} f(x, y) P(x, y)
$$

Covariance

Definition
The covariance of of two random variables X and Y is

$$
\operatorname{cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]
$$

Covariance: properties

- Note that

$$
\operatorname{cov}(X, X)=\operatorname{var}(X)
$$

- The covariance of of two random variables X and Y can be computed as

$$
\operatorname{cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
$$

Example

Example

Assume that the joint probability of X (receive values 1,2) and Y (receives values $1,2,3$) is represented by the following table

Y	1	2	3
1	0.14	0.42	0.06
2	0.06	0.28	0.04

Compute $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})$.

Independent variables have zero covariance

Proposition
If X and Y are independent, then

- $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$
- $\operatorname{cov}(X, Y)=0$

Variance of sum of independent variables

Proposition
If X and Y are independent, then

$$
\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)
$$

Exercise

Problem

A random variable X has the following pmf table

X	0	1	2
probability	0.25	0.5	0.25

Let Y be a continuous r.v. with density function

$$
f(y)= \begin{cases}2 x & \text { if } y \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

Assume that X and Y are independent. Compute $E(X+Y)$, $\operatorname{Var}(X+Y)$

