MATH 205: Statistical methods

Chapter 5: Useful distributions

Joint probability and marginal probability

Definition 4.4 (Joint Probability Distribution of Two Discrete Random Variables) Assume we have two random variables X and Y. The probability that X takes the value x and Y takes the value y could be written as $P(\{X=x\} \cap$ $\{Y=y\})$. It is more usual to write it as

$$
P(x, y)
$$

This is referred to as the joint probability distribution of the two random variables (or, quite commonly, the joint). You can think of this as a table of probabilities, one for each possible pair of x and y values.

Definition 4.6 (Marginal Probability of a Random Variable) Write $P(x, y)$ for the joint probability distribution of two random variables X and Y. Then

$$
P(x)=\sum_{y} P(x, y)=\sum_{y} P(\{X=x\} \cap\{Y=y\})=P(\{X=x\})
$$

is referred to as the marginal probability distribution of X.

Independent variables

Definition 4.7 (Independent Random Variables) The random variables X and Y are independent if the events $\{X=x\}$ and $\{Y=y\}$ are independent for all values x and y. This means that

$$
P(\{X=x\} \cap\{Y=y\})=P(\{X=x\}) P(\{Y=y\}),
$$

which we can rewrite as

$$
P(x, y)=P(x) P(y)
$$

Expected value: multivariate

Given two discrete random variable X, Y and f is a function of (X, Y). Then $f(X, Y)$ is a also discrete random variable, and

$$
\mathbb{E}[f(X, Y)]=\sum_{x, y} f(x, y) P(x, y)
$$

Covariance

Definition

The covariance of of two random variables X and Y is

$$
\operatorname{cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]
$$

- Note that

$$
\operatorname{cov}(X, X)=\operatorname{var}(X)
$$

- The covariance of of two random variables X and Y can be computed as

$$
\operatorname{cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
$$

Typical example

Example

Assume that the joint probability of X (receive values 1,2) and Y (receives values $1,2,3$) is represented by the following table

Y	1	2	3
1	0.14	0.42	0.06
2	0.06	0.28	0.04

Compute $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})$.

Variance of sum of independent variables

Proposition

If X and Y are independent, then

- $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$
- $\operatorname{cov}(X, Y)=0$

Proposition
If X and Y are independent, then

$$
\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)
$$

Previous lecture: Exercise

Problem

A random variable X has the following pmf table

X	0	1	2
probability	0.25	0.5	0.25

Let Y be a continuous r.v. with density function

$$
f(y)= \begin{cases}2 x & \text { if } y \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

Assume that X and Y are independent. Compute $E(X+Y)$, $\operatorname{Var}(X+Y)$

Linear combination of random variables

Theorem
Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables (with possibly different means and/or variances). Define

$$
T=a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{n} X_{n}
$$

then the mean and the standard deviation of T can be computed by

- $E(T)=a_{1} E\left(X_{1}\right)+a_{2} E\left(X_{2}\right)+\ldots+a_{n} E\left(X_{n}\right)$
- $\operatorname{Var}(T)=a_{1}^{2} \operatorname{Var}\left(X_{1}\right)+a_{2}^{2} \operatorname{Var}\left(X_{2}\right)+\ldots+a_{n}^{2} \operatorname{Var}\left(X_{n}\right)$

Example

Problem

A gas station sells three grades of gasoline: regular unleaded, extra unleaded, and super unleaded. These are priced at 2.20, 2.35, and 2.50 per gallon, respectively.

Let X_{1}, X_{2}, and X_{3} denote the amounts of these grades purchased (gallons) on a particular day. Suppose the X_{i} 's are independent with $\mu_{1}=1000, \mu_{2}=500, \mu_{3}=300, \sigma_{1}=100, \sigma_{2}=80, \sigma_{3}=50$. Compute the expected value and the standard deviation of the revenue from sales

$$
Y=2.2 X_{1}+2.35 X_{2}+2.5 X_{3}
$$

Example

Problem

Let X_{1}, X_{2}, X_{3} be three continuous r.v. sampled from the same distribution with density function

$$
f(x)= \begin{cases}2 x & \text { if } x \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

Let

$$
Y=\frac{X_{1}+X_{2}+X_{3}}{3}
$$

Compute $E[Y]$ and $\operatorname{Var}[Y]$.

Review: Chapter 4 - Random variables and expectations

4.1 Random variables and probability distribution

- Discrete
- Continuous
- Joint and marginal distributions
- Independent variables
4.2 Expectations
- Mean
- Variance
- Covariance
- Expectations of functions of random variable(s)

Chapter 5: Useful distributions

Useful distributions

In the lectures:

- Uniform distribution
- Normal distribution
- Bernoulli distribution
- Binomial distribution

In the lab:

- Geometric distribution
- Poisson distribution
- Beta distribution
- Gamma distribution
- Exponential distribution

The Discrete Uniform Distribution

Definition

A random variable has the discrete uniform distribution if it takes each of k values with the same probability $1 / k$, and all other values with probability zero.

Problem
Consider a random variable X that follows discrete uniform distribution on the set $\{1,2,3,4\}$.
Compute $E(X)$ and $\operatorname{Var}(X)$.

