MATH 205: Statistical methods

Lecture 21: Useful distributions (cont.)

Announcements

- Homework 3 due this Friday, before lecture
- Quiz 3 this Friday (end of lecture)
- Next week
- Monday-Wednesday: Midterm-Simulation in the labs. Open book + internet.
- Wednesday's lecture: Review session before the written exam
- Friday: Midterm-Written. Closed book.
Can use calculator.
Can bring a A4-sized hand-written one-sided note to the exam.

Review: Random variables and expectations

4.1 Random variables and probability distribution

- Discrete
- Continuous
- Joint and marginal distributions
- Independent variables
4.2 Expectations
- Mean
- Variance
- Covariance
- Expectations of functions of random variable(s)

Linear combination of random variables

Theorem
Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables (with possibly different means and/or variances). Define

$$
T=a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{n} X_{n}
$$

then the mean and the standard deviation of T can be computed by

- $E(T)=a_{1} E\left(X_{1}\right)+a_{2} E\left(X_{2}\right)+\ldots+a_{n} E\left(X_{n}\right)$
- $\operatorname{Var}(T)=a_{1}^{2} \operatorname{Var}\left(X_{1}\right)+a_{2}^{2} \operatorname{Var}\left(X_{2}\right)+\ldots+a_{n}^{2} \operatorname{Var}\left(X_{n}\right)$

Chapter 5: Useful distributions

Useful distributions

In the lectures:

- Uniform distribution
- Normal distribution
- Bernoulli distribution
- Binomial distribution

In the lab:

- Geometric distribution
- Poisson distribution
- Beta distribution
- Gamma distribution
- Exponential distribution

The Discrete Uniform Distribution

Definition

A random variable has the discrete uniform distribution if it takes each of k values with the same probability $1 / k$, and all other values with probability zero.

Problem
Consider a random variable X that follows discrete uniform distribution on the set $\{1,2,3,4\}$.
Compute $E(X)$ and $\operatorname{Var}(X)$.

The continuous uniform distribution

Definition

Write I for the lower bound and u for the upper bound. The probability density function for the uniform distribution on the interval l, u is

$$
f(x)= \begin{cases}\frac{1}{u-l}, & x \in[I, u] \\ 0 & \text { otherwise }\end{cases}
$$

Problem

Consider a random variable X that follows continuous uniform distribution on $[I, u]$.
Compute $E(X)$ and $\operatorname{Var}(X)$ (in terms of I, u).

The standard normal distribution

Definition

The probability density function

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

is known as the standard normal distribution.

The standard normal distribution has mean 0 and variance 1 .

Normal distributions

Write μ for the mean of a random variable X and σ for its standard deviation; if

$$
\frac{X-\mu}{\sigma}
$$

has a standard normal distribution, then X is a normal random variable.

Normal distributions

Definition

If X a normal random variable with probability density function

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

then

$$
E[X]=\mu, \quad \operatorname{Var}(X)=\sigma^{2}
$$

$\mathcal{N}\left(\mu, \sigma^{2}\right)$

$E(X)=\mu, \operatorname{Var}(X)=\sigma^{2}$

Shifting and scaling normal random variables

Problem
Let X be a normal random variable with mean μ and standard deviation σ.
Then

$$
Z=\frac{X-\mu}{\sigma}
$$

follows the standard normal distribution.

Exercise

Problem
Let X be a $\mathcal{N}(3,9)$ random variable. Compute $P[X \leq 5.25]$.

