MATH 205: Statistical methods

Lecture 24: Confidence intervals of the population mean

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

The story so far...

Random sample

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

The random variables $X_1, X_2, ..., X_n$ are said to form a (simple) random sample of size n if

- 1. the X_i 's are independent random variables
- 2. every X_i has the same probability distribution

Linear combination of random variables

Theorem

Let $X_1, X_2, ..., X_n$ be independent random variables (with possibly different means and/or variances). Define

$$T = a_1 X_1 + a_2 X_2 + \ldots + a_n X_n$$

then the mean and the standard deviation of T can be computed by

A D N A 目 N A E N A E N A B N A C N

- $E(T) = a_1 E(X_1) + a_2 E(X_2) + \ldots + a_n E(X_n)$
- $Var(T) = a_1^2 Var(X_1) + a_2^2 Var(X_2) + \ldots + a_n^2 Var(X_n)$

 $\mathcal{N}(\mu, \sigma^2)$

 $E(X) = \mu$, $Var(X) = \sigma^2$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Linear combination of normal random variables

Theorem

Let $X_1, X_2, ..., X_n$ be independent normal random variables (with possibly different means and/or variances). Then

$$T = a_1 X_1 + a_2 X_2 + \ldots a_n X_n$$

A D N A 目 N A E N A E N A B N A C N

also follows the normal distribution with

- $E(T) = a_1 E(X_1) + a_2 E(X_2) + \ldots + a_n E(X_n)$
- $Var(T) = a_1^2 Var(X_1) + a_2^2 Var(X_2) + \ldots + a_n^2 Var(X_n)$

Mean and variance of the sample mean

Theorem

Given independent random samples $X_1, X_2, ..., X_n$ from a distribution with mean μ and standard deviation σ , the mean is modeled by a random variable \bar{X} ,

$$\bar{X} = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

Then

$$E[\bar{X}] = \mu$$

and

$$Var(\bar{X}) = \frac{\sigma^2}{n}$$

Law of large numbers

Let X_1, X_2, \ldots, X_n be a random sample from a distribution with mean μ and variance σ^2 . Then

$$\bar{X}
ightarrow \mu$$

as *n* approaches infinity

人口 医水黄 医水黄 医水黄素 化甘油

The Central Limit Theorem

Theorem

Let X_1, X_2, \ldots, X_n be a random sample from a distribution with mean μ and variance σ^2 . Then, in the limit when $n \to \infty$, the \bar{X} follows normal distribution.

Recall that

$$E[\bar{X}] = \mu, \quad \sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}},$$

this means we have

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

follows the standard normal distribution. Rule of Thumb:

If n > 30, the Central Limit Theorem can be used for computation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Confidence intervals of the population mean

A good prediction comes with a range

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A good prediction comes with a range

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A 70% confidence region of the path of a hurricane.

Confidence

- Assume that you have been using an AI to predict the stock price of Microsoft every day in the last few years
- The prediction comes as a range, e.g., [295, 305]
- The algorithm, on average, is correct 95 out of 100 days
- Then we say that a prediction from this AI has a confidence of 95%

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Confidence interval: Example 1

Problem

Suppose the sediment density (g/cm) of a randomly selected specimen from a certain region is normally distributed with mean μ (unknown) and standard deviation $\sigma = 0.85$. A random sample of n = 25 specimens is selected with sample average \bar{X} . Find a number c such that

$$P\left[-c < rac{ar{X}-\mu}{\sigma/\sqrt{n}} < c
ight] = 0.95$$

Confidence interval

We have

$$P\left[-1.96 < rac{ar{X}-\mu}{\sigma/\sqrt{n}} < 1.96
ight] = 0.95$$

• Rearranging the inequalities gave

$$P\left[ar{X} - 1.96rac{\sigma}{\sqrt{n}} \le \mu \le ar{X} + 1.96rac{\sigma}{\sqrt{n}}
ight] = 0.95$$

• This means that if you use

$$\left[ar{X}-1.96rac{\sigma}{\sqrt{n}},ar{X}+1.96rac{\sigma}{\sqrt{n}}
ight]$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

as a range to estimate $\mu,$ then you are correct 95% of the time.

Normal distribution with know σ

Using

$$\left[ar{X}-1.96rac{\sigma}{\sqrt{n}},ar{X}+1.96rac{\sigma}{\sqrt{n}}
ight]$$

as a range to estimate μ is correct 95% of the time.

• If after observing $X_1 = x_1$, $X_2 = x_2$,..., $X_n = x_n$, we compute the observed sample mean \bar{x} . Then

$$\left(ar{x}-1.96rac{\sigma}{\sqrt{n}},ar{x}+1.96rac{\sigma}{\sqrt{n}}
ight)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

is a 95% confidence interval of μ

z-critical value

NOTATION z_{α} will denote the value on the measurement axis for which α of the area under the z curve lies to the right of z_{α} . (See Figure 4.19.)

For example, $z_{.10}$ captures upper-tail area .10 and $z_{.01}$ captures upper-tail area .01.

Figure 4.19 z_{α} notation illustrated

Since α of the area under the standard normal curve lies to the right of z_{α} , $1 - \alpha$ of the area lies to the left of z_{α} . Thus z_{α} is the $100(1 - \alpha)$ th percentile of the standard normal distribution. By symmetry the area under the standard normal curve to the left of $-z_{\alpha}$ is also α . The z_{α} 's are usually referred to as **z critical values**. Table 4.1 lists the most useful standard normal percentiles and z_{α} values.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $100(1-\alpha)\%$ confidence interval

Figure 8.4 $P(-z_{\alpha/2} \le Z \le z_{\alpha/2}) = 1 - \alpha$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$100(1-\alpha)\%$ confidence interval

A 100(1 – α)% confidence interval for the mean μ of a normal population when the value of σ is known is given by

$$\left(\bar{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right)$$
(8.5)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

or, equivalently, by $\bar{x} \pm z_{\alpha/2} \cdot \sigma / \sqrt{n}$.

Interpreting confidence intervals

95% confidence interval: If we repeat the experiment many times, the interval contains μ about 95% of the time

Interpreting confidence intervals

Writing

$$P[\mu \in (ar{X} - 1.7, ar{X} + 1.7)] = 95\%$$

is okay.

• If
$$\bar{x} = 2.7$$
, writing

$$P[\mu \in (1, 4.4)] = 95\%$$

is NOT correct.

- Saying $\mu \in (1, 4.4)$ with confidence level 95% is good.
- Saying "if we repeat the experiment many times, the interval contains μ about 95% of the time" is perfect.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example

Example

Assume that the helium porosity (in percentage) of coal samples taken from any particular seam is normally distributed with true standard deviation $\sigma = .75$.

- Compute a 95% CI for the true average porosity of a certain seam if the average porosity for 20 specimens from the seam was 4.85.
- How large a sample size is necessary if the width of the 95% interval is to be .40?

One-sided Cls (Confidence bounds)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Example 1b: One-sided confidence interval

Problem

Suppose the sediment density (g/cm) of a randomly selected specimen from a certain region is normally distributed with mean μ (unknown) and standard deviation $\sigma = 0.85$. A random sample of n = 25 specimens is selected with sample average \bar{X} . Find a number b such that

$$P\left[rac{ar{X}-\mu}{\sigma/\sqrt{n}} < b
ight] = 0.95$$

Cls vs. one-sided Cls

Cls:

• $100(1-\alpha)\%$ confidence

$$\left(\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$$

95% confidence

$$\left(ar{x}-1.96rac{\sigma}{\sqrt{n}},ar{x}+1.96rac{\sigma}{\sqrt{n}}
ight)$$

One-sided Cls:

• $100(1-\alpha)\%$ confidence

$$\left(-\infty,\bar{x}+z_{\alpha}\frac{\sigma}{\sqrt{n}}\right)$$

95% confidence

$$\left(-\infty, \bar{x} + 1.64 \frac{\sigma}{\sqrt{n}}\right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ