MATH 205: Statistical methods

Lecture 24: Confidence intervals of the population mean

The story so far...

Random sample

Definition

The random variables $X_{1}, X_{2}, \ldots, X_{n}$ are said to form a (simple) random sample of size n if

1. the X_{i} 's are independent random variables
2. every X_{i} has the same probability distribution

Linear combination of random variables

Theorem
Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables (with possibly different means and/or variances). Define

$$
T=a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{n} X_{n}
$$

then the mean and the standard deviation of T can be computed by

- $E(T)=a_{1} E\left(X_{1}\right)+a_{2} E\left(X_{2}\right)+\ldots+a_{n} E\left(X_{n}\right)$
- $\operatorname{Var}(T)=a_{1}^{2} \operatorname{Var}\left(X_{1}\right)+a_{2}^{2} \operatorname{Var}\left(X_{2}\right)+\ldots+a_{n}^{2} \operatorname{Var}\left(X_{n}\right)$

$\mathcal{N}\left(\mu, \sigma^{2}\right)$

$E(X)=\mu, \operatorname{Var}(X)=\sigma^{2}$

Linear combination of normal random variables

Theorem
Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent normal random variables (with possibly different means and/or variances). Then

$$
T=a_{1} X_{1}+a_{2} X_{2}+\ldots a_{n} X_{n}
$$

also follows the normal distribution with

- $E(T)=a_{1} E\left(X_{1}\right)+a_{2} E\left(X_{2}\right)+\ldots+a_{n} E\left(X_{n}\right)$
- $\operatorname{Var}(T)=a_{1}^{2} \operatorname{Var}\left(X_{1}\right)+a_{2}^{2} \operatorname{Var}\left(X_{2}\right)+\ldots+a_{n}^{2} \operatorname{Var}\left(X_{n}\right)$

Mean and variance of the sample mean

Theorem
Given independent random samples $X_{1}, X_{2}, \ldots, X_{n}$ from a distribution with mean μ and standard deviation σ, the mean is modeled by a random variable \bar{X},

$$
\bar{X}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}
$$

Then

$$
E[\bar{X}]=\mu
$$

and

$$
\operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}
$$

Law of large numbers

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with mean μ and variance σ^{2}. Then

$$
\bar{X} \rightarrow \mu
$$

as n approaches infinity

The Central Limit Theorem

Theorem
Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with mean μ and variance σ^{2}. Then, in the limit when $n \rightarrow \infty$, the \bar{X} follows normal distribution.
Recall that

$$
E[\bar{X}]=\mu, \quad \sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}},
$$

this means we have

$$
\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}
$$

follows the standard normal distribution.
Rule of Thumb:
If $n>30$, the Central Limit Theorem can be used for computation.

Confidence intervals of the population mean

A good prediction comes with a range

A good prediction comes with a range

A 70% confidence region of the path of a hurricane.

Confidence

- Assume that you have been using an Al to predict the stock price of Microsoft every day in the last few years
- The prediction comes as a range, e.g., [295, 305]
- The algorithm, on average, is correct 95 out of 100 days
- Then we say that a prediction from this AI has a confidence of 95\%

Confidence interval: Example 1

Problem

Suppose the sediment density (g / cm) of a randomly selected specimen from a certain region is normally distributed with mean μ (unknown) and standard deviation $\sigma=0.85$. A random sample of $n=25$ specimens is selected with sample average \bar{X}.
Find a number c such that

$$
P\left[-c<\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}<c\right]=0.95
$$

Confidence interval

- We have

$$
P\left[-1.96<\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}<1.96\right]=0.95
$$

- Rearranging the inequalities gave

$$
P\left[\bar{X}-1.96 \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X}+1.96 \frac{\sigma}{\sqrt{n}}\right]=0.95
$$

- This means that if you use

$$
\left[\bar{X}-1.96 \frac{\sigma}{\sqrt{n}}, \bar{X}+1.96 \frac{\sigma}{\sqrt{n}}\right]
$$

as a range to estimate μ, then you are correct 95% of the time.

Normal distribution with know σ

- Using

$$
\left[\bar{X}-1.96 \frac{\sigma}{\sqrt{n}}, \bar{X}+1.96 \frac{\sigma}{\sqrt{n}}\right]
$$

as a range to estimate μ is correct 95% of the time.

- If after observing $X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}$, we compute the observed sample mean \bar{x}. Then

$$
\left(\bar{x}-1.96 \frac{\sigma}{\sqrt{n}}, \bar{x}+1.96 \frac{\sigma}{\sqrt{n}}\right)
$$

is a 95% confidence interval of μ

z-critical value

z_{α} will denote the value on the measurement axis for which α of the area under the z curve lies to the right of z_{α}. (See Figure 4.19.)

For example, $z_{.10}$ captures upper-tail area .10 and $z_{.01}$ captures upper-tail area .01 .

Figure $4.19 z_{\alpha}$ notation illustrated
Since α of the area under the standard normal curve lies to the right of $z_{\alpha}, 1-\alpha$ of the area lies to the left of z_{α}. Thus z_{α} is the $100(1-\alpha)$ th percentile of the standard normal distribution. By symmetry the area under the standard normal curve to the left of $-z_{\alpha}$ is also α. The z_{α} 's are usually referred to as z critical values. Table 4.1 lists the most useful standard normal percentiles and z_{α} values.

100(1- $)$ \% confidence interval

Figure 8.4 $P\left(-z_{\alpha / 2} \leq Z \leq z_{\alpha / 2}\right)=1-\alpha$

100(1- α)\% confidence interval

A $\mathbf{1 0 0 (1 - \alpha) \%}$ confidence interval for the mean μ of a normal population when the value of σ is known is given by

$$
\begin{equation*}
\left(\bar{x}-z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}\right) \tag{8.5}
\end{equation*}
$$

or, equivalently, by $\bar{x} \pm z_{\alpha / 2} \cdot \sigma / \sqrt{n}$.

Interpreting confidence intervals

95\% confidence interval: If we repeat the experiment many times, the interval contains μ about 95% of the time

Interpreting confidence intervals

- Writing

$$
P[\mu \in(\bar{X}-1.7, \bar{X}+1.7)]=95 \%
$$

is okay.

- If $\bar{x}=2.7$, writing

$$
P[\mu \in(1,4.4)]=95 \%
$$

is NOT correct.

- Saying $\mu \in(1,4.4)$ with confidence level 95% is good.
- Saying "if we repeat the experiment many times, the interval contains μ about 95% of the time" is perfect.

Example

Example

Assume that the helium porosity (in percentage) of coal samples taken from any particular seam is normally distributed with true standard deviation $\sigma=.75$.

- Compute a $95 \% \mathrm{Cl}$ for the true average porosity of a certain seam if the average porosity for 20 specimens from the seam was 4.85 .
- How large a sample size is necessary if the width of the 95% interval is to be .40 ?

One-sided Cls (Confidence bounds)

Example 1b: One-sided confidence interval

Problem

Suppose the sediment density (g / cm) of a randomly selected specimen from a certain region is normally distributed with mean μ (unknown) and standard deviation $\sigma=0.85$. A random sample of $n=25$ specimens is selected with sample average \bar{X}.
Find a number b such that

$$
P\left[\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}<b\right]=0.95
$$

Cls vs. one-sided Cls

Cls:

- $100(1-\alpha) \%$ confidence

$$
\left(\bar{x}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)
$$

- 95\% confidence

$$
\left(\bar{x}-1.96 \frac{\sigma}{\sqrt{n}}, \bar{x}+1.96 \frac{\sigma}{\sqrt{n}}\right)
$$

One-sided Cls:

- $100(1-\alpha) \%$ confidence

$$
\left(-\infty, \bar{x}+z_{\alpha} \frac{\sigma}{\sqrt{n}}\right)
$$

- 95\% confidence

$$
\left(-\infty, \bar{x}+1.64 \frac{\sigma}{\sqrt{n}}\right)
$$

