MATH 205: Statistical methods

Lecture 31: p-value (cont.)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Announcement

- Office hour on Friday (11/18) is cancelled. Make-up office hours from 1pm-2pm Monday (11/28) and Wednesday (11/30)
- The lecture on Friday (11/18) is also cancelled. A video lecture will be recorded and make available on Canvas.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Test about a population mean

Null hypothesis

$$H_0: \mu = \mu_0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- The alternative hypothesis will be either:
 - $H_a: \mu > \mu_0$
 - $H_a: \mu < \mu_0$
 - $H_a: \mu \neq \mu_0$

Test about a population mean

Test statistic

$$\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}$$

or

$$\frac{\bar{X}-\mu_0}{s/\sqrt{n}}$$

- If under the assumption of the experiment, the test statistics above follow normal distribution, we will perform a *z*-test
- If under the assumption of the experiment, the test statistics above follow *t*-distribution, we will perform a *t*-test (with degree of freedom n 1)

P-values for z-tests

Figure 9.7 Determination of the P-value for a z test

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Practice problem

Problem

The target thickness for silicon wafers used in a certain type of integrated circuit is 245 μ m. A sample of 50 wafers is obtained and the thickness of each one is determined, resulting in a sample mean thickness of 246.18 μ m and a sample standard deviation of 3.60 μ m.

At significant level $\alpha = 0.01$, does this data suggest that true average wafer thickness is something other than the target value?

 $\Phi(z)$

					100 C				1	
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9278	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997

≣▶ ≣ のへの

P-values for *z*-tests

- 1. Parameter of interest: μ = true average wafer thickness
- **2.** Null hypothesis: H_0 : $\mu = 245$
- **3.** Alternative hypothesis: H_a : $\mu \neq 245$

4. Formula for test statistic value:
$$z = \frac{x - 245}{s/\sqrt{n}}$$

- 5. Calculation of test statistic value: $z = \frac{246.18 245}{3.60/\sqrt{50}} = 2.32$
- 6. Determination of P-value: Because the test is two-tailed,

$$P$$
-value = 2[1 - $\Phi(2.32)$] = .0204

7. Conclusion: Using a significance level of .01, H_0 would not be rejected since .0204 > .01. At this significance level, there is insufficient evidence to conclude that true average thickness differs from the target value.

P-values for *z*-tests

P-value:
$$P = \begin{cases} 1 - \Phi(z) & \text{for an upper-tailed test} \\ \Phi(z) & \text{for a lower-tailed test} \\ 2[1 - \Phi(|z|)] & \text{for a two-tailed test} \end{cases}$$

Practice problem

Problem

The target thickness for silicon wafers used in a certain type of integrated circuit is 245 μ m. A sample of 50 wafers is obtained and the thickness of each one is determined, resulting in a sample mean thickness of 246.18 μ m and a sample standard deviation of 3.60 μ m.

Does this data suggest that true average wafer thickness is larger than the target value? Carry out a test of significance at level .01 and provide the corresponding P-value.

Interpreting P-values

A P-value:

- is not the probability that H_0 is true
- is not the probability of rejecting H_0
- is the probability, calculated assuming that *H*₀ is true, of obtaining a test statistic value at least as contradictory to the null hypothesis as the value that actually resulted

Problem

A company that makes cola drinks states that the mean caffeine content per one 12-ounce bottle of cola is 40 milligrams. You work as a quality control manager and are asked to test this claim. During your tests, you find that a random sample of 30 bottles of cola (12-ounce) has a mean caffeine content of 39.2 milligrams. From a previous study, you know that the standard deviation of the population is $\sigma = 7.5$ milligrams. We assume that the caffeine content is normally distributed.

(a) (20 points) At $\alpha = 1\%$ level of significant, can you reject the company's claim? What is the P-value associated with the test?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●