MATH 205: Statistical methods

Lecture 32: Comparing the mean of two populations

Chapter 7: Significance of evidence

7.1 Significance and p-value
7.2.1 Comparing the mean of two populations

Last week: Test about a population mean

- Null hypothesis

$$
H_{0}: \mu=\mu_{0}
$$

- The alternative hypothesis will be either:
- $H_{a}: \mu>\mu_{0}$
- $H_{a}: \mu<\mu_{0}$
- $H_{a}: \mu \neq \mu_{0}$

Note: μ_{0} here denotes a constant, and μ denotes the population mean (unknown)

Test about a population mean

- Test statistic

$$
\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}
$$

or

$$
\frac{\bar{X}-\mu_{0}}{s / \sqrt{n}}
$$

- If under the assumption of the experiment, the test statistics above follow normal distribution, we will perform a z-test
- If under the assumption of the experiment, the test statistics above follow t-distribution, we will perform a t-test (with degree of freedom $n-1$)

P-values for z-tests

Figure 9.7 Determination of the P-value for a z test

Two-sample inference: example

Example

Let μ_{1} and μ_{2} denote true average decrease in cholesterol for two drugs. From two independent samples $X_{1}, X_{2}, \ldots, X_{m}$ and $Y_{1}, Y_{2}, \ldots, Y_{n}$, we want to test:

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2} \\
& H_{a}: \mu_{1} \neq \mu_{2}
\end{aligned}
$$

Two-sample inference: example

Example

Let μ_{1} and μ_{2} denote true average decrease in cholesterol for two drugs. From two independent samples $X_{1}, X_{2}, \ldots, X_{m}$ and $Y_{1}, Y_{2}, \ldots, Y_{n}$, we want to test:

$$
\begin{aligned}
& H_{0}: \mu_{1}-\mu_{2}=15 \\
& H_{a}: \mu_{1}-\mu_{2}>15
\end{aligned}
$$

Settings

Assumption

1. $X_{1}, X_{2}, \ldots, X_{m}$ is a random sample from a population with mean μ_{1} and variance σ_{1}^{2}.
2. $Y_{1}, Y_{2}, \ldots, Y_{n}$ is a random sample from a population with mean μ_{2} and variance σ_{2}^{2}.
3. The X and Y samples are independent of each other.

Analysis

Problem

Assume that

- $X_{1}, X_{2}, \ldots, X_{m}$ is a random sample from a population with mean μ_{1} and variance σ_{1}^{2}.
- $Y_{1}, Y_{2}, \ldots, Y_{n}$ is a random sample from a population with mean μ_{2} and variance σ_{2}^{2}.
- The X and Y samples are independent of each other.

Compute (in terms of $\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, m, n$)
(a) $E[\bar{X}-\bar{Y}]$
(b) $\operatorname{Var}[\bar{X}-\bar{Y}]$ and $\sigma_{\bar{X}-\bar{Y}}$

Properties of $\bar{X}-\bar{Y}$

Proposition
The expected value of $X-Y$ is $\mu_{1}-\mu_{2}$, so $X-Y$ is an unbiased estimator of $\mu_{1}-\mu_{2}$. The standard deviation of $\bar{X}-\bar{Y}$ is

$$
\sigma_{\bar{X}-\bar{Y}}=\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}
$$

Confidence intervals

Assume further that the distributions of X and Y are normal and σ_{1}, σ_{2} are known:

Problem

(a) What is the distribution of

$$
\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}}
$$

(b) Compute

$$
P\left[-1.96 \leq \frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}} \leq 1.96\right]
$$

(c) Construct a $95 \% \mathrm{Cl}$ for $\mu_{1}-\mu_{2}$ (in terms of $\bar{x}, \bar{y}, m, n, \sigma_{1}$, $\left.\sigma_{2}\right)$.

Confidence intervals

When both population distributions are normal, standardizing $\bar{X}-\bar{Y}$ gives a random variable Z with a standard normal distribution. Since the area under the z curve between $-z_{\alpha / 2}$ and $z_{\alpha / 2}$ is $1-\alpha$, it follows that

$$
P\left(-z_{\alpha / 2}<\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}}<z_{\alpha / 2}\right)=1-\alpha
$$

Manipulation of the inequalities inside the parentheses to isolate $\mu_{1}-\mu_{2}$ yields the equivalent probability statement

$$
P\left(\bar{X}-\bar{Y}-z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}<\mu_{1}-\mu_{2}<\bar{X}-\bar{Y}+z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}\right)=1-\alpha
$$

Testing the difference between two population means

- Setting: independent normal random samples $X_{1}, X_{2}, \ldots, X_{m}$ and $Y_{1}, Y_{2}, \ldots, Y_{n}$ with known values of σ_{1} and σ_{2}. Constant Δ_{0}.
- Null hypothesis:

$$
H_{0}: \mu_{1}-\mu_{2}=\Delta_{0}
$$

- Alternative hypothesis:
(a) $H_{a}: \mu_{1}-\mu_{2}>\Delta_{0}$
(b) $H_{a}: \mu_{1}-\mu_{2}<\Delta_{0}$
(c) $H_{a}: \mu_{1}-\mu_{2} \neq \Delta_{0}$
- When $\Delta=0$, the test (c) becomes

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2} \\
& H_{a}: \mu_{1} \neq \mu_{2}
\end{aligned}
$$

Testing the difference between two population means

Assume that we want to test the null hypothesis $H_{0}: \mu_{1}-\mu_{2}=\Delta_{0}$ against each of the following alternative hypothesis
(a) $H_{a}: \mu_{1}-\mu_{2}>\Delta_{0}$
(b) $H_{a}: \mu_{1}-\mu_{2}<\Delta_{0}$
(c) $H_{a}: \mu_{1}-\mu_{2} \neq \Delta_{0}$

We use the test statistic:

$$
z=\frac{(\bar{x}-\bar{y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}} .
$$

and derive the p -value in the same way as the one-sample tests.

Practice problem

Each student in a class of 21 responded to a questionnaire that requested their GPA and the number of hours each week that they studied. For those who studied less than $10 \mathrm{~h} /$ week the GPAs were

$$
2.80,3.40,4.00,3.60,2.00,3.00,3.47,2.80,2.60,2.00
$$

and for those who studied at least $10 \mathrm{~h} /$ week the GPAs were

$$
3.00,3.00,2.20,2.40,4.00,2.96,3.41,3.27,3.80,3.10,2.50
$$

Assume that the distribution of GPA for each group is normal and both distributions have standard deviation $\sigma_{1}=\sigma_{2}=0.6$. Treating the two samples as random, is there evidence that true average GPA differs for the two study times? Carry out a test of significance at level . 05 .

