MATH 205: Statistical methods

Lecture 33: Comparing the mean of two populations (cont.)

Announcements

- Homework 5 due on $12 / 02$
- Wednesday 11/30: Quiz 5 (Hypothesis testing, one sample)
- Final exam:

$$
\begin{gathered}
\text { 12/15/2022, Thursday } \\
\text { 3:30PM - 5:30PM } \\
\text { Gore Hall Room } 304
\end{gathered}
$$

- Plan for the rest of the semester
- Linear regression
- Review of materials + Practice exam
- There will be no lab next week
- Course evaluations will be available 12/01 through 12/08

Chapter 7: Significance of evidence

7.1 Significance and p-value
7.2.1 Comparing the mean of two populations

Settings

Assumption

1. $X_{1}, X_{2}, \ldots, X_{m}$ is a random sample from a population with mean μ_{1} and variance σ_{1}^{2}.
2. $Y_{1}, Y_{2}, \ldots, Y_{n}$ is a random sample from a population with mean μ_{2} and variance σ_{2}^{2}.
3. The X and Y samples are independent of each other.

Proposition

$$
E[\bar{X}-\bar{Y}]=\mu_{1}-\mu_{2}
$$

and

$$
\sigma_{\bar{x}-\bar{Y}}=\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}
$$

Confidence intervals

When both population distributions are normal, standardizing $\bar{X}-\bar{Y}$ gives a random variable Z with a standard normal distribution. Since the area under the z curve between $-z_{\alpha / 2}$ and $z_{\alpha / 2}$ is $1-\alpha$, it follows that

$$
P\left(-z_{\alpha / 2}<\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}}<z_{\alpha / 2}\right)=1-\alpha
$$

Manipulation of the inequalities inside the parentheses to isolate $\mu_{1}-\mu_{2}$ yields the equivalent probability statement

$$
P\left(\bar{X}-\bar{Y}-z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}<\mu_{1}-\mu_{2}<\bar{X}-\bar{Y}+z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}\right)=1-\alpha
$$

Testing the difference between two population means

- Setting: independent normal random samples $X_{1}, X_{2}, \ldots, X_{m}$ and $Y_{1}, Y_{2}, \ldots, Y_{n}$ with known values of σ_{1} and σ_{2}. Constant Δ_{0}.
- Null hypothesis:

$$
H_{0}: \mu_{1}-\mu_{2}=\Delta_{0}
$$

- Alternative hypothesis:
(a) $H_{a}: \mu_{1}-\mu_{2}>\Delta_{0}$
(b) $H_{a}: \mu_{1}-\mu_{2}<\Delta_{0}$
(c) $H_{a}: \mu_{1}-\mu_{2} \neq \Delta_{0}$
- When $\Delta=0$, the test (c) becomes

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2} \\
& H_{a}: \mu_{1} \neq \mu_{2}
\end{aligned}
$$

Testing the difference between two population means

Assume that we want to test the null hypothesis $H_{0}: \mu_{1}-\mu_{2}=\Delta_{0}$ against each of the following alternative hypothesis
(a) $H_{a}: \mu_{1}-\mu_{2}>\Delta_{0}$
(b) $H_{a}: \mu_{1}-\mu_{2}<\Delta_{0}$
(c) $H_{a}: \mu_{1}-\mu_{2} \neq \Delta_{0}$

We use the test statistic:

$$
z=\frac{(\bar{x}-\bar{y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}} .
$$

and derive the p -value in the same way as the one-sample tests.

Practice problem

Each student in a class of 21 responded to a questionnaire that requested their GPA and the number of hours each week that they studied. For those who studied less than $10 \mathrm{~h} /$ week the GPAs were

$$
2.80,3.40,4.00,3.60,2.00,3.00,3.47,2.80,2.60,2.00
$$

and for those who studied at least $10 \mathrm{~h} /$ week the GPAs were

$$
3.00,3.00,2.20,2.40,4.00,2.96,3.41,3.27,3.80,3.10,2.50
$$

Assume that the distribution of GPA for each group is normal and both distributions have standard deviation $\sigma_{1}=\sigma_{2}=0.6$. Treating the two samples as random, is there evidence that true average GPA differs for the two study times? Carry out a test of significance at level . 05 .

Large-sample tests/confidence intervals

- Central Limit Theorem: \bar{X} and \bar{Y} are approximately normal when $n>30 \rightarrow$ so is $\bar{X}-\bar{Y}$. Thus

$$
\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}}
$$

is approximately standard normal

- When n is sufficiently large $S_{1} \approx \sigma_{1}$ and $S_{2} \approx \sigma_{2}$
- Conclusion:

$$
\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{S_{1}^{2}}{m}+\frac{S_{2}^{2}}{n}}}
$$

is approximately standard normal when n is sufficiently large
If $m, n>40$, we can ignore the normal assumption and replace σ by S

Large-sample tests

We use the test statistic:

$$
z=\frac{(\bar{x}-\bar{y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{m}+\frac{s_{2}^{2}}{n}}} .
$$

and derive the p -value in the same way as the one-sample tests.

Large-sample Cls

Proposition

Provided that m and n are both large, a Cl for $\mu_{1}-\mu_{2}$ with a confidence level of approximately $100(1-\alpha) \%$ is

$$
\bar{x}-\bar{y} \pm z_{\alpha / 2} \sqrt{\frac{s_{1}^{2}}{m}+\frac{s_{2}^{2}}{n}}
$$

where - gives the lower limit and + the upper limit of the interval. An upper or lower confidence bound can also be calculated by retaining the appropriate sign and replacing $z_{\alpha / 2}$ by z_{α}.

Example

Example

Let μ_{1} and μ_{2} denote true average tread lives for two competing brands of size P205/65R15 radial tires.
(a) Test

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2} \\
& H_{a}: \mu_{1} \neq \mu_{2}
\end{aligned}
$$

at level 0.05 using the following data: $m=45, \bar{x}=42,500$, $s_{1}=2200, n=45, \bar{y}=40,400$, and $s_{2}=1900$.
(b) Construct a $95 \% \mathrm{Cl}$ for $\mu_{1}-\mu_{2}$.

