MATH 205: Statistical methods

Lecture 35: Linear regression

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Announcements

• Final exam:

12/15/2022, Thursday 3:30PM - 5:30PM Gore Hall Room 304

- Plan for the rest of the semester
 - Linear regression
 - Review of materials + Practice exam
- There will be no lab next week
- Course evaluations will be available 12/01 through 12/08

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Linear regression: Using correlation to predict

Procedure 2.1 (Predicting a Value Using Correlation) Assume we have *N* data items which are 2-vectors $(x_1, y_1), \ldots, (x_N, y_N)$, where N > 1. These could be obtained, for example, by extracting components from larger vectors. Assume we have an *x* value x_0 for which we want to give the best prediction of a *y* value, based on this data. The following procedure will produce a prediction:

· Transform the data set into standard coordinates, to get

$$\begin{split} \hat{x}_{i} &= \frac{1}{\text{std}(x)}(x_{i} - \text{mean}(\{x\})) \\ \hat{y}_{i} &= \frac{1}{\text{std}(y)}(y_{i} - \text{mean}(\{y\})) \\ \hat{x}_{0} &= \frac{1}{\text{std}(x)}(x_{0} - \text{mean}(\{x\})). \end{split}$$

· Compute the correlation

$$r = \operatorname{corr}(\{(x, y)\}) = \operatorname{mean}(\{\hat{x}\hat{y}\}).$$

- Predict ŷ₀ = r̂x₀.
- · Transform this prediction into the original coordinate system, to get

$$y_0 = \text{std}(y)r\hat{x}_0 + \text{mean}(\{y\})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Linear regression

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Mathematical model:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

Linear regression

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Why do we do regression?

- Regression to Make Predictions
 → You already knew how to do this!
- Regression to Spot Trends \rightarrow Are you sure that $\beta_1 > 0$?

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Linear regression: settings

Assumption

x₁, x₂,..., x_n are fixed design points (non-random)
 Linear model:

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

where $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$ are random sample from $\mathcal{N}(0, \sigma^2)$ 3. Let assume (for now), that σ is known

We want to make inferences about the trend, so β_1 is important

Estimate β_1

The true value of β_1 will be estimated by

$$\hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(Y_i - \bar{Y})}{\sum (x_i - \bar{x})^2}$$

We first note that

$$\sum (x_i - \bar{x})\bar{Y} = \bar{Y} \cdot \sum x_i - \bar{x} = 0$$

We can write $\hat{\beta}_1$ as

$$\hat{\beta}_1 = \frac{\sum (x_i - \bar{x}) Y_i}{\sum (x_i - \bar{x})^2}$$

thus $\hat{\beta}_1$ is a linear combination of independent normal random variables

Problem

We have

$$\hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(Y_i - \bar{Y})}{\sum (x_i - \bar{x})^2} = \frac{\sum (x_i - \bar{x})Y_i}{\sum (x_i - \bar{x})^2}$$

where

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

thus $\hat{\beta}_1$ is a linear combination of independent normal random variables Y_i .

Tasks:

- What are $E[Y_i]$ and $Var(Y_i)$ in terms of x_i , β_0 and β_1 ?
- What are $E[\overline{Y}]$ in terms of \overline{x} , β_0 and β_1 ?
- What are $E[\hat{\beta}_1]$ and $Var[\hat{\beta}_1]$ in terms of β_0 , β_1 and x_i 's.