MATH 205: Statistical methods

Lecture 36: Review

Announcements

- Final exam:

> 12/15/2022, Thursday
> 3:30PM - 5:30PM
> Gore Hall Room 304

- Closed-book. You are allowed to bring a one-sided hand-written A4-sized note to the exam.
- You can use calculators (and you should have one).
- Course evaluations will be available 12/01 through 12/08

Last lecture

We have

$$
\hat{\beta}_{1}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(Y_{i}-\bar{Y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum\left(x_{i}-\bar{x}\right) Y_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}}
$$

where

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, \quad \epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

thus $\hat{\beta}_{1}$ is a linear combination of independent normal random variables Y_{i}.
Tasks:

- What are $E\left[Y_{i}\right]$ and $\operatorname{Var}\left(Y_{i}\right)$ in terms of x_{i}, β_{0} and β_{1} ?
- What are $E[\bar{Y}]$ in terms of \bar{x}, β_{0} and β_{1} ?
- What are $E\left[\hat{\beta}_{1}\right]$ and $\operatorname{Var}\left[\hat{\beta}_{1}\right]$ in terms of β_{0}, β_{1} and x_{i} 's.

Linear regression: σ is known

Problem
We have

$$
\frac{\hat{\beta}-\beta_{1}}{\sigma / \sqrt{S_{x x}}}
$$

follows standard normal distribution, where

$$
S_{x x}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

Use this to construct a 95% confidence interval of β_{1}.

Confidence interval for β_{1} : σ is known

Recalling that

$$
S_{x x}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

and

$$
\hat{\beta}_{1}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(Y_{i}-\bar{Y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}
$$

A $100(1-\alpha) \%$ confidence interval for the slope β_{1} of the true regression line is

$$
\left(\hat{\beta}_{1}-z_{\alpha / 2} \frac{\sigma}{\sqrt{S_{x x}}}, \hat{\beta}_{1}+z_{\alpha / 2} \frac{\sigma}{\sqrt{S_{x x}}}\right)
$$

Confidence interval for β_{1} : σ is known

A $100(1-\alpha) \%$ confidence upper bound for the slope β_{1} of the true regression line is

$$
\left(-\infty, \hat{\beta}_{1}+z_{\alpha} \frac{\sigma}{\sqrt{S_{x x}}}\right)
$$

Testing about the slope β_{1}

- Null hypothesis

$$
H_{0}: \beta_{1}=\Delta
$$

where Δ is a constant.

- The alternative hypothesis will be either:
- $H_{a}: \beta_{1}>\Delta$
- $H_{a}: \beta_{1}<\Delta$
- $H_{a}: \beta_{1} \neq \Delta$

How do we do testing?

- Let's assume that the null hypothesis is correct \rightarrow this means $\beta_{1}=\Delta$
- This implies that

$$
\frac{\hat{\beta}_{1}-\Delta}{\sigma / \sqrt{S_{x x}}}
$$

follows standard normal distribution.

- Note that this z - value is something we can compute from data
- This means, depending on the alternative hypothesis, we can quantify the p-value associated with this z - value
- Comparing this p -value with significance level \rightarrow complete testing procedure

Example

Based on the average SAT score of entering freshmen at a university, can we predict the percentage of those freshmen who will get a degree there within 6 years? A random sample of 20 universities is obtained:

University	Grad rate	SAT
Princeton	98	1465.00
Brown	96	1395.00
Johns Hopkins	88	1380.00
Pittsburgh	65	1215.00
SUNY-Binghamton	80	1235.00
Kansas	58	1011.10
Dayton	76	1055.54
Illinois Inst Tech	67	1166.65
Arkansas	48	1055.54
Florida Inst Tech	54	1155.00
New Mexico Inst Mining	42	1099.99
Temple	54	1080.00
Montana	45	944.43
New Mexico	42	899.99
South Dakota	51	944.43
Virginia Commonwealth	42	1060.00
Widener	70	1005.00
Alabama A\&M	38	722.21
Toledo	44	877.77
Wayne State	31	833.32

Example

Is it possible to predict graduation rates from SAT scores?

\rightarrow It seems that a linear model is appropriate.

Example

Problem

Assume that σ is known to be 15 , and the computed summary from the dataset is

$$
\hat{\beta}_{1}=0.08855 ; \quad S_{x x}=704125 ; \quad n=20
$$

- Construct a 95\% confidence interval of the slope of the true regression line β_{1}
- Conduct a test of hypothesis

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \\
& H_{a}: \beta_{1} \neq 0
\end{aligned}
$$

General case: σ is unknown

Linear regression: σ is unknown

Theorem

If we define

$$
S^{2}=\frac{\sum\left[Y_{i}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}\right)\right]^{2}}{n-2}
$$

then the random variable

$$
\frac{\hat{\beta}_{1}-\beta_{1}}{S / \sqrt{S_{x x}}}
$$

follows the t-distribution with degrees of freedom $(n-2)$.

Testing about the slope β_{1} : example

It is well known that the more beer you drink, the more your blood alcohol level rises. Suppose we have the following data on student beer consumption

Student	1	2	3	4	5	6	7	8	9	10
Beers	5	2	9	8	3	7	3	5	3	5
BAL	0.10	0.03	0.19	0.12	0.04	0.095	0.07	0.06	0.02	0.05

Make a scatterplot and fit the data with a regression line. Test the hypothesis that another beer raises your BAL by 0.02 percent against the alternative that it is less.

$$
\begin{aligned}
& H_{0}: \beta_{1}=0.02 \\
& H_{a}: \beta_{1}<0.02
\end{aligned}
$$

Chapter 1\& 2: Describing datasets

- Summarizing univariate data
- mean
- median
- standard deviation and variance
- interquartile range
- Correlation
- Standard coordinates
- Using correlation to predict

Chapter 3: Basic ideas in probability

3.1 Sample space, events
3.2 Probability
3.3 Independence
3.4 Conditional probability

Chapter 4: Random variables and expectations

4.1 Random variables and probability distribution

- Discrete
- Continuous
- Joint and marginal distributions
- Independent variables
4.2 Expectations
- Mean
- Variance
- Covariance

Chapter 5 \& 6: Useful distributions and the sample mean

- Working with normal random variables
- Linear combinations of random variables
- Distribution of the sample mean
- law of large numbers
- central limit theorem

Confidence intervals

- Construct confidence intervals for
- the population mean
- the difference between two population means
- Confidence intervals and confidence bounds

Hypothesis testings

- Hypothesis testings for
- the population mean
- the difference between two population means
- What you need to be able to do
- Write down a complete testing procedure
- Compute p-value
- Common mistakes
- Forget to state (or intentionally avoid stating) the null and the alternative hypothesis: no partial credit if your solution contains mistake
- Pick the wrong alternative hypothesis: lose some significant point, but the rest of the partial credits are given
- Wrong p-value
- Wrong/missing conclusion

