MATH 205, Fall 2022
Instructor: Vu Dinh
Midterm practice
October $26^{\text {th }}, 2021$
Time Limit: 50 Minutes

This exam contains 4 pages (including this cover page) and 3 problems.
You are allowed to bring a one-sided A4-sized hand-written note as reference.
You may use calculators.

Problem	Points	Score
1	15	
2	15	
3	30	
Total:	60	

1. (15 points) Consider a the distribution with the following probability mass function

$$
\begin{array}{c|ccc}
\mathrm{x} & 30 & 35 & 40 \\
\hline \mathrm{p}(\mathrm{x}) & 0.2 & 0.3 & 0.5
\end{array}
$$

Let X_{1}, X_{2} be two independent random sample from this distribution, and $T=X_{1}+2 X_{2}$.

- Compute the expected value and the standard deviation of X_{1}.
- Compute the expected value and the standard deviation of T.

2. (15 points) An actuary studying the insurance preferences of automobile owners makes the following conclusions:

- An automobile owner is twice as likely to purchase collision coverage as disability coverage.
- The event that an automobile owner purchases collision coverage is independent of the event that they purchases disability coverage.
- The probability that an automobile owner purchases both collision and disability coverages is 0.15 .

Calculate the probability that an automobile owner purchases disability coverage.
3. (a) (15 points) Assume that the joint probability of X (receive values 1, 2) and Y (receives values $1,2,3$) is represented by the following table

X	1	2	3	4
1	0.15	0.32	0.06	0.1
2	0.05	0.18	0.04	0.1

Construct the probability mass function table of Y and compute $\operatorname{Var}\left[Y^{2}\right]$.
(b) (15 points) Let X be a continuous random variable with the following probability density function

$$
f(x)=\left\{\begin{array}{l}
\frac{3}{2} x^{2}, \text { for } x \in[-1,1] \\
0 \text { otherwise }
\end{array}\right.
$$

Compute

- $E\left(X^{2}+X\right)$
- Compute $P[-0.5 \leq X \leq 0.75]$

