Mathematical techniques in data science

Lecture 2: Recap on Python and Probability

General information

Classes:

MWF 11:30am-12:25am, Ewing Hall 207

- Office hours (starting from the 2nd week):
 - Mondays 2:00pm-3:30pm (Ewing Hall 312)
 - Wednesdays 2:00pm-3:30pm (Ewing 107A)
 - By appointments
- Instructor: Vu Dinh
- TA: Komali Challa
- Website:

https://vucdinh.github.io/m637f23

Evaluation

- Homework (theoretical + programming problems): 50%
- In-class quizzes and demos: 10%
- Final project: 40% (10% presentation, 30% final report) with a possible **+5% bonus**
- Grading system:
- \geq 94% At least A
- ≥ 90% At least A-
- ≥ 80% At least B-
- \geq 70% At least C-
- ≥ 60% At least D-
- < 60% F

Platforms

 We will use Python during the course (there will be sessions to review the language). Specifically, we will use Google Colab for coding and programming assignments:

https://colab.research.google.com

 We will use LaTeX to write the final report. The easiest way to use it collaboratively is to register an Overleaf account:

https://www.overleaf.com

Final project

- Group project: 5-6 people (sign up on Canvas)
- The groups should be formed by the end of Week 4
- Data-oriented projects
 - Pick a practical learning problem with a dataset
 - Analyze the dataset
 - Write a report (in the form of a 4-page IEEE conference paper)
 - Present the project (last week of the semester)

Tentative schedule

- Introduction to (supervised) machine learning (4 weeks)
- Mathematical techniques in data science (8 weeks)
- Final project presentations (1 week)

Review: Probability

Topics

- Notations and definitions
- Basic probability rules
- Normal distribution

Random variables

- Random variable X: used to describe random quantities
 Example: X = number we get when rolling a dice
- Sample space: set of all possible outcomes of X
 Example: sample space = {1, 2, 3, 4, 5, 6}
- Event: a subset of sample space
 Example: event that X is even = {2, 4, 6}

Discrete random variable

- Sample space is discrete
- Probability mass function (pmf):
 - Assign a probability value to each outcome in sample space
 - Example: $P(1) = P(2) = \ldots = P(6) = 1/6$

Discrete random variable

Probability of an event A:

$$P(A) = \sum_{x \in A} P(x)$$

Example: $P({X \text{ is even}}) = P(2) + P(4) + P(6) = 1/2$

• Sometimes we write P(X = x) for P(x), for example, P(X = 2) = P(2).

Continuous random variable

- Sample space is continuous (real values)
- Characterized by a density function P:
 - $P(x) \ge 0$ for all $x \in \mathbb{R}$
 - $\int_{-\infty}^{\infty} P(x) dx = 1$
 - For any fixed constant a, b,

$$P(a \le X \le b) = \int_a^b P(x) \ dx$$

Figure 4.2 $P(a \le X \le b)$ = the area under the density curve between a and b

Joint probability distribution

- Random variables X and Y
- Sample space of $X = \{x_1, x_2, \dots, x_n\}$
- Sample space of $Y = \{y_1, y_2, \dots, y_m\}$
- Joint probability distribution of X and Y: assigns probability to each combination of values of X and Y.
- P(X = x, Y = y) = P(x, y): probability that X has value x and Y has value y

Marginal distribution

• Marginal distribution of X:

$$P(x) = \sum_{y} P(x, y) = \sum_{i=1}^{m} P(x, y_i)$$

Can be extended to more than two random variables:

$$P(z) = \sum_{x} \sum_{y} P(x, y, z)$$

For continuous random variables

$$P(x) = \int_{V} P(x, y) \ dy$$

Conditional probability distribution

• Probability of X = x given Y = y:

$$P(x|y) = P(X = x|Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

Product rule:

$$P(x,y) = P(x)P(y|x)$$

 Bayes' rule: very important in machine learning; allow us to reverse the order of conditional probabilities

$$P(x|y) = \frac{P(x)P(y|x)}{P(y)} = \frac{P(x)P(y|x)}{\sum_{x'} P(x')P(y|x')}$$

Expectation of random variables

 Expectation (expected value or mean) of a discrete random variable X:

$$E[X] = \sum_{x} xP(x) = \sum_{i=1}^{n} x_i P(x_i)$$

For continuous variables:

$$E[X] = \int_{X} x P(x) dx$$

Can be used for functions:

$$E[g(X)] = \sum_{x} g(x)P(x)$$

or

$$E[g(X)] = \int_{X} g(x)P(x)dx$$

Variance of random variables

 Measure the spread of values of a random variable around the mean:

$$Var(X) = E[(X - E(X))^2]$$

• Standard deviation: $sd(X) = \sqrt{Var(X)}$

Normal distribution (Gaussian distribution)

- Notation: $\mathcal{N}(\mu, \sigma^2)$
- Continuous random variable with density

$$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

• $E(X) = \mu$, $Var(X) = \sigma^2$

Linear combination of random variables

Theorem

Let $X_1, X_2, ..., X_n$ be independent random variables (with possibly different means and/or variances). Define

$$T = a_1X_1 + a_2X_2 + \ldots + a_nX_n$$

then the mean and the standard deviation of T can be computed by

•
$$E(T) = a_1 E(X_1) + a_2 E(X_2) + \ldots + a_n E(X_n)$$

•
$$\sigma_T^2 = a_1^2 \sigma_{X_1}^2 + a_2^2 \sigma_{X_2}^2 + \ldots + a_n^2 \sigma_{X_n}^2$$

Example

Let X_1, X_2, \dots, X_n be independent random sample from a distribution with μ and standard deviation σ .

Define

$$\bar{X} = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

What are the mean and the standard deviation of \bar{X} ?

Mean and variance of the sample mean

Let X_1, X_2, \ldots, X_n be a random sample from a distribution with mean value μ and standard deviation σ . Then

1.
$$E(\overline{X}) = \mu_{\overline{Y}} = \mu$$

2.
$$V(\overline{X}) = \sigma_{\overline{X}}^2 = \sigma^2/n$$
 and $\sigma_{\overline{X}} = \sigma/\sqrt{n}$

Law of large numbers

THEOREM

If X_1, X_2, \ldots, X_n is a random sample from a distribution with mean μ and variance σ^2 , then \overline{X} converges to μ

- **a.** In mean square $E[(\bar{X} \mu)^2] \to 0$ as $n \to \infty$
- **b.** In probability $P(|\overline{X} \mu| \ge \varepsilon) \to 0 \text{ as } n \to \infty$

The Central Limit Theorem

Theorem

Let X_1, X_2, \ldots, X_n be a random sample from a distribution with mean μ and variance σ^2 . Then, in the limit when $n \to \infty$, the standardized version of \bar{X} have the standard normal distribution

$$\lim_{n\to\infty} \mathbb{P}\left(\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \le z\right) = \mathbb{P}[Z \le z] = \Phi(z)$$

Example

Problem

When a batch of a certain chemical product is prepared, the amount of a particular impurity in the batch is a random variable with mean value $4.0~{\rm g}$ and standard deviation $1.5~{\rm g}$.

If 50 batches are independently prepared, what is the (approximate) probability that the sample average amount of impurity X is between 3.5 and 3.8 g?

Hint:

- First, compute $\mu_{ar{X}}$ and $\sigma_{ar{X}}$
- Note that

$$\frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}}$$

is (approximately) standard normal.