# Mathematical techniques in data science 

Lecture 2: Recap on Python and Probability

## General information

- Classes:

MWF 11:30am-12:25am, Ewing Hall 207

- Office hours (starting from the 2nd week):
- Mondays 2:00pm-3:30pm (Ewing Hall 312)
- Wednesdays 2:00pm-3:30pm (Ewing 107A)
- By appointments
- Instructor: Vu Dinh
- TA: Komali Challa
- Website:
https://vucdinh.github.io/m637f23


## Evaluation

- Homework (theoretical + programming problems): 50\%
- In-class quizzes and demos: $10 \%$
- Final project: $40 \%$ ( $10 \%$ presentation, $30 \%$ final report) with a possible $\mathbf{+ 5 \%}$ bonus
- Grading system:
$\geq 94 \%$ At least A
$\geq 90 \%$ At least A-
$\geq 80 \%$ At least B-
$\geq 70 \%$ At least C-
$\geq 60 \%$ At least D-
$<60 \%$ F


## Platforms

- We will use Python during the course (there will be sessions to review the language). Specifically, we will use Google Colab for coding and programming assignments:
https://colab.research.google.com
- We will use LaTeX to write the final report. The easiest way to use it collaboratively is to register an Overleaf account:
https://www.overleaf.com


## Final project

- Group project: 5-6 people (sign up on Canvas)
- The groups should be formed by the end of Week 4
- Data-oriented projects
- Pick a practical learning problem with a dataset
- Analyze the dataset
- Write a report (in the form of a 4-page IEEE conference paper)
- Present the project (last week of the semester)


## Tentative schedule

- Introduction to (supervised) machine learning (4 weeks)
- Mathematical techniques in data science (8 weeks)
- Final project presentations (1 week)

Review: Probability

## Topics

- Notations and definitions
- Basic probability rules
- Normal distribution


## Random variables

- Random variable $X$ : used to describe random quantities Example: $X=$ number we get when rolling a dice
- Sample space: set of all possible outcomes of $X$ Example: sample space $=\{1,2,3,4,5,6\}$
- Event: a subset of sample space Example: event that $X$ is even $=\{2,4,6\}$


## Discrete random variable

- Sample space is discrete
- Probability mass function (pmf):
- Assign a probability value to each outcome in sample space
- Example: $P(1)=P(2)=\ldots=P(6)=1 / 6$

$$
1 / 6 \quad 1 / 6
$$



## Discrete random variable



- Probability of an event $A$ :

$$
P(A)=\sum_{x \in A} P(x)
$$

Example: $P(\{\mathrm{X}$ is even $\})=P(2)+P(4)+P(6)=1 / 2$

- Sometimes we write $P(X=x)$ for $P(x)$, for example, $P(X=2)=P(2)$.


## Continuous random variable

- Sample space is continuous (real values)
- Characterized by a density function $P$ :
- $P(x) \geq 0$ for all $x \in \mathbb{R}$
- $\int_{-\infty}^{\infty} P(x) d x=1$
- For any fixed constant $a, b$,

$$
P(a \leq X \leq b)=\int_{a}^{b} P(x) d x
$$



Figure 4.2 $P(a \leq X \leq b)=$ the area under the density curve between $a$ and $b$

## Joint probability distribution

- Random variables $X$ and $Y$
- Sample space of $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Sample space of $Y=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$
- Joint probability distribution of X and Y : assigns probability to each combination of values of $X$ and $Y$.
- $P(X=x, Y=y)=P(x, y)$ : probability that $X$ has value $x$ and $Y$ has value $y$


## Marginal distribution

- Marginal distribution of $X$ :

$$
P(x)=\sum_{y} P(x, y)=\sum_{i=1}^{m} P\left(x, y_{i}\right)
$$

- Can be extended to more than two random variables:

$$
P(z)=\sum_{x} \sum_{y} P(x, y, z)
$$

- For continuous random variables

$$
P(x)=\int_{y} P(x, y) d y
$$

## Conditional probability distribution

- Probability of $X=x$ given $Y=y$ :

$$
P(x \mid y)=P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}
$$

- Product rule:

$$
P(x, y)=P(x) P(y \mid x)
$$

- Bayes' rule: very important in machine learning; allow us to reverse the order of conditional probabilities

$$
P(x \mid y)=\frac{P(x) P(y \mid x)}{P(y)}=\frac{P(x) P(y \mid x)}{\sum_{x^{\prime}} P\left(x^{\prime}\right) P\left(y \mid x^{\prime}\right)}
$$

## Expectation of random variables

- Expectation (expected value or mean) of a discrete random variable $X$ :

$$
E[X]=\sum_{x} x P(x)=\sum_{i=1}^{n} x_{i} P\left(x_{i}\right)
$$

- For continuous variables:

$$
E[X]=\int_{x} x P(x) d x
$$

- Can be used for functions:

$$
E[g(X)]=\sum_{x} g(x) P(x)
$$

or

$$
E[g(X)]=\int_{x} g(x) P(x) d x
$$

## Variance of random variables

- Measure the spread of values of a random variable around the mean:

$$
\operatorname{Var}(X)=E\left[(X-E(X))^{2}\right]
$$

- Standard deviation: $s d(X)=\sqrt{\operatorname{Var}(X)}$



## Normal distribution (Gaussian distribution)

- Notation: $\mathcal{N}\left(\mu, \sigma^{2}\right)$
- Continuous random variable with density

$$
\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

- $E(X)=\mu, \operatorname{Var}(X)=\sigma^{2}$



## Linear combination of random variables

## Theorem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables (with possibly different means and/or variances). Define

$$
T=a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{n} X_{n}
$$

then the mean and the standard deviation of $T$ can be computed by

- $E(T)=a_{1} E\left(X_{1}\right)+a_{2} E\left(X_{2}\right)+\ldots+a_{n} E\left(X_{n}\right)$
- $\sigma_{T}^{2}=a_{1}^{2} \sigma_{X_{1}}^{2}+a_{2}^{2} \sigma_{X_{2}}^{2}+\ldots+a_{n}^{2} \sigma_{X_{n}}^{2}$


## Example

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random sample from a distribution with $\mu$ and standard deviation $\sigma$.
Define

$$
\bar{X}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}
$$

What are the mean and the standard deviation of $\bar{X}$ ?

## Mean and variance of the sample mean

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with mean value $\mu$ and standard deviation $\sigma$. Then

1. $E(\bar{X})=\mu_{\bar{X}}=\mu$
2. $V(\bar{X})=\sigma_{\bar{X}}^{2}=\sigma^{2} / n$ and $\sigma_{\bar{X}}=\sigma / \sqrt{n}$

## Law of large numbers

THEOREM
If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a distribution with mean $\mu$ and variance $\sigma^{2}$, then $\bar{X}$ converges to $\mu$
a. In mean square $\quad E\left[(X-\mu)^{2}\right] \rightarrow 0$ as $n \rightarrow \infty$
b. In probability $\quad P(|X-\mu| \geq \varepsilon) \rightarrow 0$ as $n \rightarrow \infty$


## The Central Limit Theorem

Theorem
Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with mean $\mu$ and variance $\sigma^{2}$. Then, in the limit when $n \rightarrow \infty$, the standardized version of $\bar{X}$ have the standard normal distribution

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq z\right)=\mathbb{P}[Z \leq z]=\Phi(z)
$$

## Example

## Problem

When a batch of a certain chemical product is prepared, the amount of a particular impurity in the batch is a random variable with mean value 4.0 g and standard deviation 1.5 g .

If 50 batches are independently prepared, what is the (approximate) probability that the sample average amount of impurity $X$ is between 3.5 and 3.8 g ?
Hint:

- First, compute $\mu_{\bar{X}}$ and $\sigma_{\bar{X}}$
- Note that

$$
\frac{\bar{X}-\mu_{\bar{X}}}{\sigma_{\bar{x}}}
$$

is (approximately) standard normal.

