
Mathematical techniques in data science

Lecture 4: Logistic Regression
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DSI Competition

Link for DSI Association Competition
(Prize: Free Google COLAB Subscription!)
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https://docs.google.com/forms/d/e/1FAIpQLScn1cdyIai_hPRBzeu7umDxGTtXzaiju0h07dtsySWbnL_Q1Q/viewform
https://docs.google.com/forms/d/e/1FAIpQLScn1cdyIai_hPRBzeu7umDxGTtXzaiju0h07dtsySWbnL_Q1Q/viewform


Last lecture: Nearest Neighbors

General steps to build ML models

Get and pre-process data

Visualize the data (optional)

Split data into training/test sets

Create a model

Train the model on training set; i.e. call model.fit()

Predict on test data

Compute evaluation metrics (accuracy, mean squared error, etc.)

Visualize the trained model (optional)
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Underfiting/Overfitting
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Underfiting/Overfitting

(Source: IBM)
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Underfiting/Overfitting
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Nearest neighbors: pros and cons

Pros:

Simple algorithm

Easy to implement, no training required

Can learn complex target function

Cons:

Prediction is slow

Don’t work well with high-dimensional inputs (e.g., more than 20
features)
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Logistic regression
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Supervised learning

Learning a function that maps an input to an output based on example
input-output pairs
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Supervised learning: Classification

Hand-written digit recognition (MNIST dataset)
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Classification algorithms

Logistic regression

Linear Discriminant Analysis

Support Vector Machines

Nearest neighbours
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Logistic regression

Despite the name “regression”, is a classifier

Only for binary classification

Data point (x, y) where
x = (x1, x2, . . . , xd) is a vector with d features
y is the label (0 or 1)

Logistic regression models P[y = 1|X = x]

Then
P[y = 0|X = x] = 1− P[y = 1|X = x]
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Logistic regression
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Logistic regression
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Logistic function and logit function

Transformation between (−∞,∞) and [0, 1]

f (x) =
ex

1 + ex
logit(p) = log

p

1− p
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Logistic regression
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Logistic regression

Model: Given X = x, Y is a Bernoulli random variable with
parameter p(x) = P[Y = 1|X = x] and

logit(p(x)) = β0 + β1x1 + . . .+ βdxd

for some vector β = (β0, β1, . . . , βd) ∈ Rd+1.

Goal: Find β̂ that best ”fits” the data
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To review

Probability/Statistics

Independence
Bernoulli random variables
Maximum-likelihood (ML) estimation

Calculus

Partial derivatives
Finding critical points of a function
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Parameter estimation

Data: (x1, y1), (x2, y2), . . . , (xn, yn), we have

For a Bernoulli r.v. with parameter p

P[Y = y ] = py (1− p)1−y , y ∈ {0, 1}

Likelihood of the parameter (probability of the dataset):

L(β) =
n∏

i=1

p(xi , β)
yi (1− p(xi , β))

1−yi
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Parameter estimation: maximum likelihood

The log-likelihood can be computed as

ℓ(β) = log L(β)

=
n∑

i=1

[yi log p(xi , β) + (1− yi ) log(1− p(xi , β))]

Maximize ℓ(β) to find β → the maximum-likelihood method

The term
−[y log(p) + (1− y) log(1− p)]

is known in the field as the log-loss, or the binary cross-entropy loss
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Logistic regression: estimating the parameter

The optimization needs to be performed by a numerical optimization
method

Penalties can be added to regularize the problem to avoid overfitting

max
β

ℓ(β)− 1

C

∑
i

|βi |

or

min
β

−ℓ(β) +
1

C

∑
i

|βi |2
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Logistic regression with more than 2 classes

Suppose now the response can take any of {1, . . . ,K} values

We use the categorical distribution instead of the Bernoulli
distribution

P[Y = k |X = x] = pk(x),
K∑

k=1

pk(x) = 1.

Model

pk(x) =
ew

T
k xk+bk∑K

k=1 e
wT
k xk+bk
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Softmax function
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Logistic regression: pros and cons

Pros:

Simple algorithm

Prediction is fast

Easy to implement

The forward map has a closed-form formula of the derivatives

∂ℓ

∂βj
(β) =

n∑
i=1

[
yixij − xij

ex
T
i β

1 + ex
T
i β

]
.

Cons:

Linear model
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How to make logistic regression better?

We want a model that

compute the derivatives (of the objective function, with respect to the
parameters) easily

can capture complex relationships

This is difficult because complex models often have high numbers of
parameters and don’t have closed-form derivatives, and computations of

∂ℓ

∂βi
(x) ≈ ℓ(x + ϵi )− ℓ(x)

ϵi

are large (and unstable)
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How to make logistic regression better?

Automatic differentiation and back-propagation

Ideas:

Organizing information using graphs (networks)
Chain rule

(f ◦ g)′(x) = f ′(g(x))g ′(x)
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