Mathematical techniques in data science

Lecture 5: Neural networks
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Reminders

e Homework 1: due 09/29
@ Sign up for group projects by the end of Week 5
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Logistic regression

e Data point (x, y) where

o x=(x1,%,...,Xq) IS a vector with d features
o y is the label (0 or 1)

e Logistic regression models Py = 1|X = x]
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Logistic regression

Convert to
Linear transform probability 1
x wix+b

1+ e Wb

Linear transform —— wix + b
‘7

1 e

Convert to 1
probability 1+ ewlix-b
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Logistic regression with more than 2 classes

@ Suppose now the response can take any of {1,..., K} values

@ We use the categorical distribution instead of the Bernoulli
distribution

K
PIY =kIX =x] = pu(x), > pu(x)=1.
k=1

o Model

eW,Z-Xk + by
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Softmax function
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Logistic regression: pros and cons

Pros:
@ Simple algorithm
@ Prediction is fast
o Easy to implement
o

The forward map has a closed-form formula of the derivatives
e B

ot ¢
o5~ % [y‘w '

i=1

Cons:

@ Linear model
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How to make logistic regression better?

We want a model that

@ computes the derivatives (of the objective function, with respect to
the parameters) easily

@ can capture complex relationships

This is difficult because complex models often have high numbers of
parameters and don't have closed-form derivatives, and computations of

ot B+ e, x) = (B, x)
55i(ﬁ’x) ” €

are costly (and unstable)
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Ideas

@ Automatic differentiation and back-propagation
@ ldeas:
e Organizing information using graphs (networks)

o Chain rule
(fog)(x)=r'(g(x))g'(x)

Lecture 5: Neural networks Mathematical techniques in data science



Neural networks
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Logistic neuron
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Neural circuit
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Feed-forward neural networks
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Feed-forward neural networks

hidden neurons

output neurons
input neurons
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Feed-forward neural networks

@ Structure:
o Graphical representation
e Activation functions

o Training:
e Loss functions

e Stochastic gradient descent
o Back-propagation
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Activation functions
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Activation functions

—
—_—
Input —p Qutput
—
—_—

If we do not apply an activation function, then the output signal would
simply be a simple linear function of the input signals
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Activation functions

Activation Functions

Sigmoid Leaky ReLU )

o(z) = 1l max(0.1z, x)

tanh Maxout

tanh(z) - H max(w{ z + by, wiz + by)

ReLU / ELU N_J/
0 T x>0

max( ’ CU) . {a(em -1) =<0 - ~ #
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Logistic function (sigmoid function)

Transformation between (—o0,00) and [0, 1]

i

6 —f(x):logix_—x
4
2
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. p
eX logit = log ——
Flx) = git(p) = log 7
14 eX
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Hyperbolic tangent

= Sigmoid function
Tanh function

o
n

-4 -2 0 2
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Hyperbolic tangent

sigmoid tanh

Function output

P -0
Input value

Vanishing gradient problem
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Rectified linear unit (ReLU)

y=0
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Rectified linear unit (ReLU)

Advantage: model sparsity, cheap to compute (no complicated math),
partially address the vanishing gradient problem

Issue: Dying RelLU
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Leaky relu

yi =0

ReLU

Yi = 04

|
Leaky ReLU/PReLU
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Exponential Linear Unit (ELU, SELU)

St
Il
o

y=a(e™1)
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Softmax function
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Feed-forward neural networks

@ Structure:
o Graphical representation
e Activation functions

o Training:
e Loss functions

e Stochastic gradient descent
o Back-propagation
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Train feed-forward neural networks
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o Data:
(leyl)a (Xz,}/2), ceey (xm_)/n)
@ Model parameters:

0 =Wy, by, Wo, by, ..., Wy, by)

@ Training: Find the best value of
0 that fits the data
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Maximum-likelihood method

@ Average log-likelihood

1 n
L£(0)= - > log P(y = yilxi,0)
i=1
@ Model parameters:

0 = (Wl7b17 W27b27" i) WvaL)

e Training: Maximize L(0)
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Cross-entropy loss (log loss)

o Cross-entropy loss = negative log-likelihood:
(0) = —L£(0)

e Goal: Minimize ¢(0)
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One-hot encoding

id color id color_red color_blue color_green
1 red 1 1 0 (<]
3 green 3 0 0 1
4 blue 4 [¢] 1 (<]

Convert a categorical value into a binary vector with exactly one “1"
element, and the rest are 0

Lecture 5: Neural networks

Mathematical techniques in data science

34 /67



Loss function for classification: cross-entropy

Code

def CrossEntropy(yHat, y):
if y == 1:
return -log(yHat)
else:
return -log(1 - yHat)
Math
In binary classification, where the number of classes M equals 2, cross-entropy can be calculated
as:
~(ylog(®) + (1 - ) log(1 - p))

If M > 2 (i.e. multiclass classification), we calculate a separate loss for each class label per
observation and sum the result.

M
- Z Yo.c log(pu,c)

=1

Note: Here y, . is the one-hot encoding of the label and p, ( is the
predicted probability for the observation o is of class ¢, respectively
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Stochastic gradient descent
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Gradient descent

Gradient Descent
Minimize a function by moving in the opposite direction of the
gradient. _

aJ

9;‘ 229;'*,089'
i

Figure: Gradient Descent. Source:
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3 \ /,/ Gradient
1
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Oloss

(Source: Sung Kim)
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Stochastic gradient descent

@ Recall that our objective function has the form

1 n
6(0) = ; Z L(Q,Xi,}/i)
i=1

@ Mini-batch stochastic gradient descent

randomly shuffle examples in the training set, divide them into k
mini-batches of data of size m
for each batch /; (i=1, ..., k), approximate the empirical risk by

A 1
00)y=—>_ 1.%.)
JEI

and update 0 R
0+ 06— pVio)

Repeat until an approximate minimum is obtained or a maximum
numbers M epochs are done
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Stochastic gradient descent: teminology

@ Mini-batch stochastic gradient descent
e randomly shuffle examples in the training set, divide them into k
mini-batches of data of size m
e for each batch /; (i=1, ..., k), approximate the objective function by

i) = 3" 10 5.)

JEi

and update 6 A
0+ 60— pVih)
o Repeat until an approximate minimum is obtained or a maximum
numbers M epochs are done
@ Terminology:
e m: batch-size
e p: learning rate
e M: number of epochs

Lecture 5: Neural networks Mathematical techniques in data science



Stochastic gradient descent (SGD)

UL
Gradient Descent \Lﬁ—/
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Stochastic gradient descent

o Gradient descent converges to the local minimum, and the fluctuation
is small

@ SGD's fluctuation is large, but enables jumping to new/better local
minima
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Escaping local minima
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Automatic diffierentiation
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Stochastic gradient descent

@ The most computationally heavy part in the training of a neural net is

to compute
ol
@ Numerical differentiation is not realistic, and symbolic differentiation
is impossible
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Automatic differentiation

@ Assume that
y = f(g(h(x)))

e Denote x = up, h(up) = u1, g(u1) = wo, f(u2) = uz =y, then

Q_ dy duiy1

duj dujyq duj
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Back-propagation

FORWARD PAGS (COMPUTE LOSS)

£
I\\\ 32 Bt L
Wz 2WXH — =6 @D —L=3(41)
o EBE 5

BACKWARD PASS (compuTe derivATives)
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Back-propagation

Use chain rule to compute V/(6)

o _ o
8/317(9[3

op Ohy Ohy
(p)- %(hz, W, bs) - 8711(/71’ W2, b) - 87)1()(’ Wi, by)
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Back-propagation

@ One forward pass to evaluate hy, hy, p, ¢

@ One backward pass to compute V{(6)
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Feed-forward neural networks
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Back-propagation

@ Advantage: The cost to compute the partial derivatives with respect
to all parameters are just twice the cost of a forward evaluations

e Drawback: The functions used to describe the network (activation
functions and loss functions) needs to belong to the class of functions
supported by the computational platform
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Some intros to computer vision
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Computer vision

A field that enables computers and systems to derive meaningful
information from digital images, videos and other visual inputs

e Image classification/object recognition
Object detection
Image segmentation

Image generation

Image style transfer
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Image classification
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Object detection
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segmentation
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Image generation
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Image style transfer
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Grayscale image representation
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Color image representation

@ Use RGB color mode
@ Represent a color by 3 values: R (Red) G (Green) B (Blue)

@ There are other color modes

Lecture 5: Neural networks Mathematical techniques in data science



Image representation

A

height

width

channel

@ An image is an H x W x C matrix: H (height), W (width), C (depth
or number of channels)

o Grayscale image: C =1
o RGB image: C =3
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Demo: train an MLP using Keras
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sklearn.neural_network.MLPClassifier

class sklearn.neural_network.MLPClassifier(hidden_layer_sizes=(100,), activation="relu’, *,
solver="adam’, alpha=0.0001, batch_size='auto’, learning_rate="'constant’, learning_rate_init=0.001,
power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False,
warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False,
validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, n_iter_no_change=10,
max_fun=15000) [source]

Multi-layer Perceptron classifier.
This model optimizes the log-loss function using LBFGS or stochastic gradient descent.
New in version 0.18.

Parameters: hidden_layer_sizes : tuple, length = n_layers - 2, default=(100,)
The ith element represents the number of neurons in the ith hidden layer.

activation : {“identity’, ‘logistic’, ‘tanh’, ‘relu’}, default="relu’
Activation function for the hidden layer.

¢ ‘identity’, no-op activation, useful to implement linear bottleneck, returns f(x) = x
e ‘logistic’, the logistic sigmoid function, returns f(x) =1/ (1 + exp(-x)).

e ‘tanh’ the hyperbolic tan function, returns f(x) = tanh(x).

e ‘relu) the rectified linear unit function, returns f(x) = max(0, x)
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Keras

Simple. Flexible. Powerful.

@ High level API for deep learning

@ More flexible to define network architecture than sklearn
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Define network architecture (1)

@ Define a network as a Sequential object

o Add layers to it one-by-one

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

model = Sequential()

model.add(Dense(50, activation='relu'))
model.add(Dense(50, activation='relu'))
model.add(Dense(10, activation='softmax'))
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Define network architecture (2)

p = softmax(WZXh, + bs)

h, = c(Wlh, +b,)
Dense /
Fully connected layer

h; =oc(Wlx + b,)

Input: x

Lecture 5: Neural networks Mathematical techniques in data science



One-hot encoding

id color id color_red color_blue color_green
1 red 1 1 0 0

2 | blue M 2 ] ) ]

3 green 3 ] ] 1

4 blue 4 [¢] 1 0

Labels in Keras are usually encoded as one-hot vectors
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