Mathematical techniques in data science

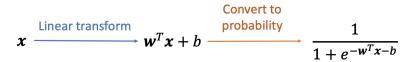
Lecture 5: Neural networks

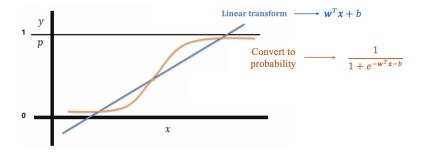
- Homework 1: due 09/29
- Sign up for group projects by the end of Week 5

・何ト ・ヨト ・ヨト

- Data point (\mathbf{x}, y) where
 - $\mathbf{x} = (x_1, x_2, \dots, x_d)$ is a vector with d features
 - y is the label (0 or 1)
- Logistic regression models $P[y = 1 | X = \mathbf{x}]$

A (10) < A (10) < A (10) </p>





э

< ロト < 同ト < ヨト < ヨト

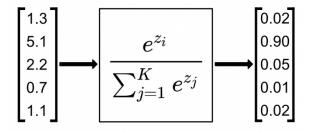
- \bullet Suppose now the response can take any of $\{1,\ldots,K\}$ values
- We use the categorical distribution instead of the Bernoulli distribution

$$P[Y = k | X = \mathbf{x}] = p_k(\mathbf{x}), \quad \sum_{k=1}^{K} p_k(\mathbf{x}) = 1.$$

Model

$$p_k(\mathbf{x}) = \frac{e^{w_k^T \mathbf{x}_k + b_k}}{\sum_{k=1}^{K} e^{w_k^T \mathbf{x}_k + b_k}}$$

Softmax function



臣

イロト イヨト イヨト

Pros:

- Simple algorithm
- Prediction is fast
- Easy to implement
- The forward map has a closed-form formula of the derivatives

$$\frac{\partial \ell}{\partial \beta_j}(\beta) = \sum_{i=1}^n \left[y_i x_{ij} - x_{ij} \frac{e^{x_i^T \beta}}{1 + e^{x_i^T \beta}} \right].$$

Cons:

• Linear model

We want a model that

- computes the derivatives (of the objective function, with respect to the parameters) easily
- can capture complex relationships

This is difficult because complex models often have high numbers of parameters and don't have closed-form derivatives, and computations of

$$rac{\partial \ell}{\partial eta_i}(eta, x) pprox rac{\ell(eta + \epsilon_i, x) - \ell(eta, x)}{\epsilon_i}$$

are costly (and unstable)

- Automatic differentiation and back-propagation
- Ideas:
 - Organizing information using graphs (networks)
 - Chain rule

$$(f \circ g)'(x) = f'(g(x))g'(x)$$

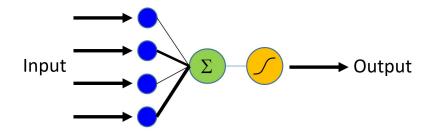
э

A (10) < A (10) < A (10) </p>

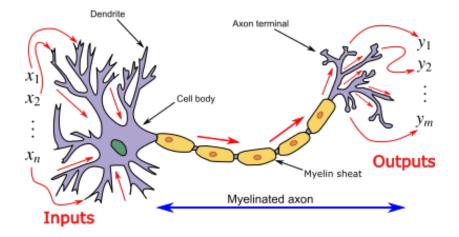
Neural networks

E

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶



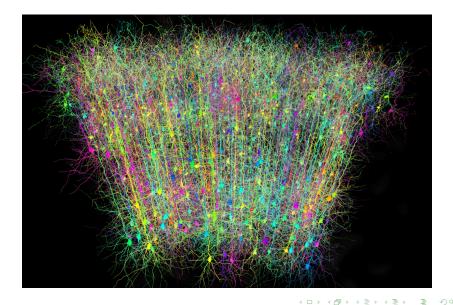
臣



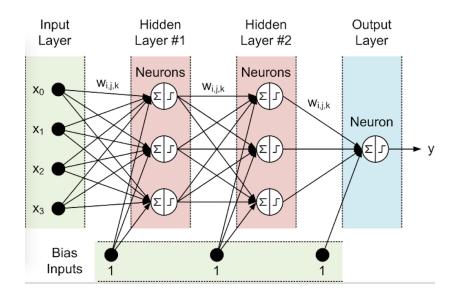
E

< ロト < 同ト < ヨト < ヨト

Neural circuit



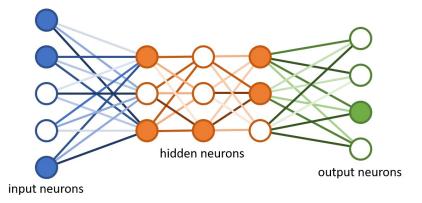
Feed-forward neural networks



Lecture 5: Neural networks

ㅋ ㅋ

Feed-forward neural networks



Ξ

イロト イヨト イヨト

• Structure:

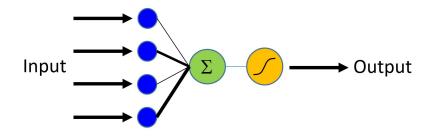
- Graphical representation
- Activation functions
- Training:
 - Loss functions
 - Stochastic gradient descent
 - Back-propagation

Activation functions

E

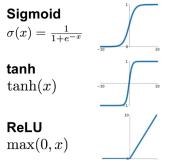
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Activation functions



If we do not apply an activation function, then the output signal would simply be a simple linear function of the input signals

Activation Functions

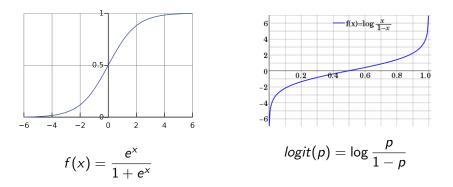


 $\begin{array}{c} \textbf{Leaky ReLU} \\ \max(0.1x,x) \end{array}$

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

Logistic function (sigmoid function)

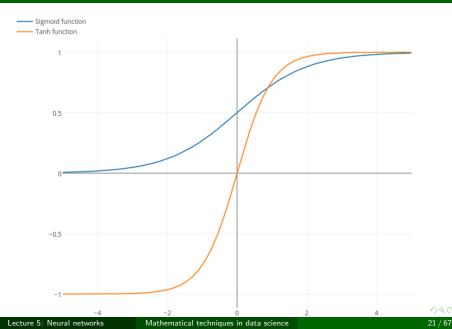
Transformation between $(-\infty,\infty)$ and [0,1]



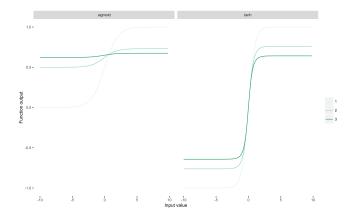
3

イロト イポト イヨト イヨト

Hyperbolic tangent



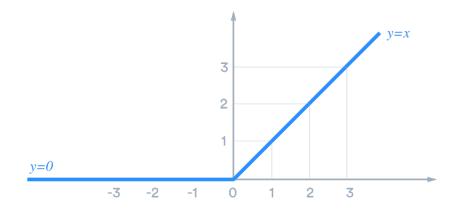
Hyperbolic tangent



Vanishing gradient problem

- 一司

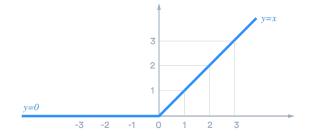
Rectified linear unit (ReLU)



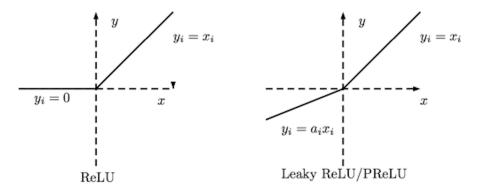
E

・ 同 ト ・ ヨ ト ・ ヨ ト

Rectified linear unit (ReLU)



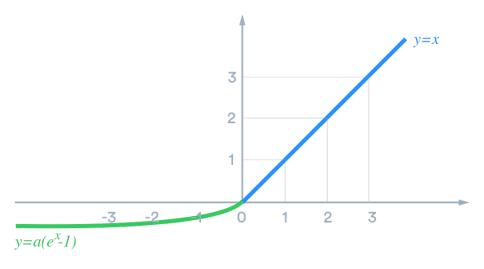
Advantage: model sparsity, cheap to compute (no complicated math), partially address the vanishing gradient problem Issue: Dying ReLU



Ξ

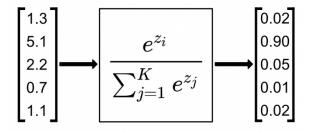
イロト イヨト イヨト

Exponential Linear Unit (ELU, SELU)



-

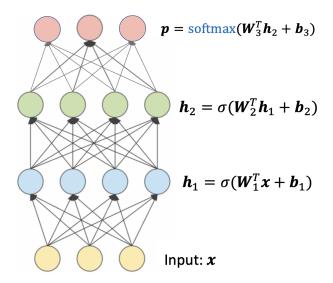
Softmax function



3

イロト イヨト イヨト

Feed-forward neural networks (multi-class classification)



28 / 67

• Structure:

- Graphical representation
- Activation functions
- Training:
 - Loss functions
 - Stochastic gradient descent
 - Back-propagation

Train feed-forward neural networks

э

イロト イヨト イヨト

• Data:

$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$$

• Model parameters:

$$\theta = (W_1, b_1, W_2, b_2, \ldots, W_L, b_L)$$

• Training: Find the best value of θ that fits the data

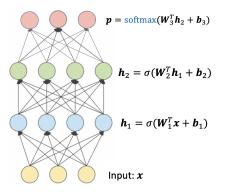


Image: A Image: A

э

• Average log-likelihood

$$\mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \log P(y = y_i | \mathbf{x}_i, \theta)$$

• Model parameters:

$$\theta = (W_1, b_1, W_2, b_2, \ldots, W_L, b_L)$$

• Training: Maximize $\mathcal{L}(\theta)$

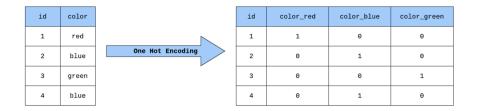
- ∢ ∃ →

• Cross-entropy loss = negative log-likelihood:

$$\ell(heta) = -\mathcal{L}(heta)$$

• Goal: Minimize $\ell(\theta)$

ヨトィヨト



Convert a categorical value into a binary vector with exactly one "1" element, and the rest are $\boldsymbol{0}$

3

イロト イボト イヨト イヨト

Loss function for classification: cross-entropy

Code

def CrossEntropy(yHat, y):
 if y == 1:
 return -log(yHat)
 else:
 return -log(1 - yHat)

Math

In binary classification, where the number of classes ${\cal M}$ equals 2, cross-entropy can be calculated as:

$$-(y \log(p) + (1 - y) \log(1 - p))$$

If M > 2 (i.e. multiclass classification), we calculate a separate loss for each class label per observation and sum the result.

$$-\sum_{c=1}^{M} y_{o,c} \log(p_{o,c})$$

Note: Here $y_{o,:}$ is the one-hot encoding of the label and $p_{o,c}$ is the predicted probability for the observation o is of class c, respectively

Stochastic gradient descent

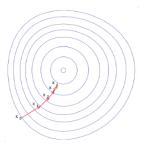
Image: A matrix and a matrix

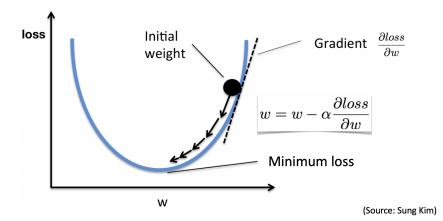
臣

Gradient Descent

Minimize a function by moving in the opposite direction of the gradient.

$$\theta_i := \theta_i - \rho \frac{\partial J}{\partial \theta_i}$$





- 一司

Stochastic gradient descent

• Recall that our objective function has the form

$$\ell(\theta) = \frac{1}{n} \sum_{i=1}^{n} L(\theta, x_i, y_i)$$

- Mini-batch stochastic gradient descent
 - randomly shuffle examples in the training set, divide them into k mini-batches of data of size m
 - for each batch I_i (i=1, ..., k), approximate the empirical risk by

$$\hat{\ell}(\theta) = \frac{1}{m} \sum_{j \in I_i} L(\theta, x_j, y_j)$$

and update θ

$$\theta \leftarrow \theta - \rho \nabla \hat{\ell}(\theta)$$

• Repeat until an approximate minimum is obtained or a maximum numbers *M* epochs are done

Lecture 5: Neural networks

Stochastic gradient descent: teminology

- Mini-batch stochastic gradient descent
 - randomly shuffle examples in the training set, divide them into k mini-batches of data of size m
 - for each batch I_i (i=1, ..., k), approximate the objective function by

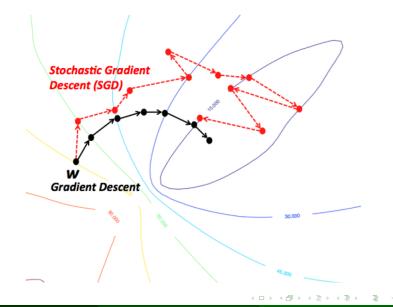
$$\hat{\ell}(\theta) = \frac{1}{m} \sum_{j \in I_i} L(\theta, x_j, y_j)$$

and update θ

$$\theta \leftarrow \theta - \rho \nabla \hat{\ell}(\theta)$$

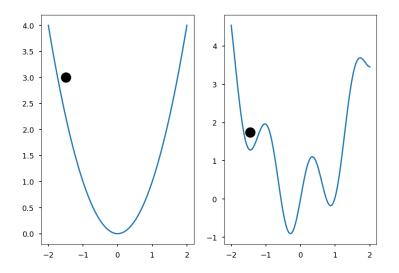
- Repeat until an approximate minimum is obtained or a maximum numbers *M* epochs are done
- Terminology:
 - m: batch-size
 - ρ : learning rate
 - M: number of epochs

Stochastic gradient descent (SGD)



- Gradient descent converges to the local minimum, and the fluctuation is small
- SGD's fluctuation is large, but enables jumping to new/better local minima

Escaping local minima



토 > 토

Automatic diffierentiation

E

イロト イヨト イヨト

• The most computationally heavy part in the training of a neural net is to compute $\partial \ell$

 $\frac{\partial \theta}{\partial \theta_{i,i}}$

• Numerical differentiation is not realistic, and symbolic differentiation is impossible

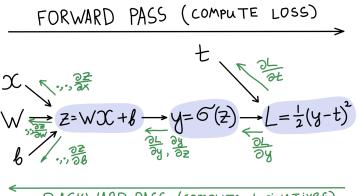
Assume that

$$y = f(g(h(x)))$$

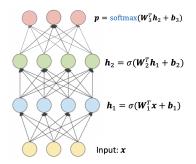
• Denote $x = u_0$, $h(u_0) = u_1$, $g(u_1) = u_2$, $f(u_2) = u_3 = y$, then

$$\frac{dy}{du_i} = \frac{dy}{du_{i+1}} \frac{du_{i+1}}{du_i}$$

• • = • • = •



BACKWARD PASS (compute derivatives)

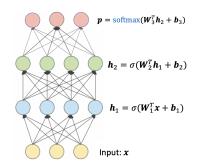


Use chain rule to compute $\nabla \ell(\theta)$

$$\frac{\partial \ell}{\partial b_1} = \frac{\partial \ell}{\partial p}(p) \cdot \frac{\partial p}{\partial h_2}(h_2, W_3, b_3) \cdot \frac{\partial h_2}{\partial h_1}(h_1, W_2, b_2) \cdot \frac{\partial h_1}{\partial b_1}(x, W_1, b_1)$$

э

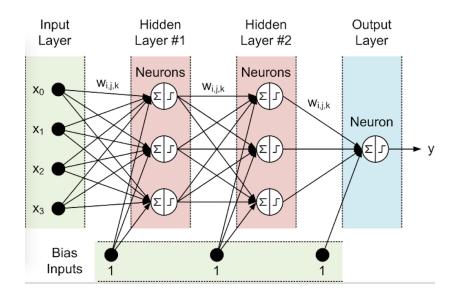
イロト イヨト イヨト



- One forward pass to evaluate h_1, h_2, p, ℓ
- One backward pass to compute $\nabla \ell(\theta)$

・何ト ・ヨト ・ヨト

Feed-forward neural networks



Lecture 5: Neural networks

ㅋ ㅋ

- Advantage: The cost to compute the partial derivatives with respect to all parameters are just twice the cost of a forward evaluations
- Drawback: The functions used to describe the network (activation functions and loss functions) needs to belong to the class of functions supported by the computational platform

Some intros to computer vision

< □ > < 同 >

э

A field that enables computers and systems to derive meaningful information from digital images, videos and other visual inputs

- Image classification/object recognition
- Object detection
- Image segmentation
- Image generation
- Image style transfer

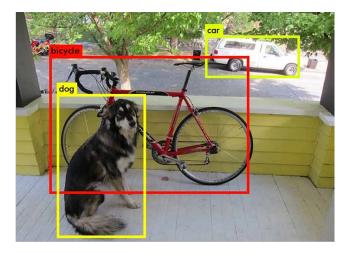
Image classification

label = 5	label = 0	label = 4	label = 1	label = 9
label = 2	label = 1	label = 3	label = 1	label = 4
label = 3	label = 5	label = 3	label = 6	label = 1
label = 7	label = 2	label = 8	label = 6	label = 9

Lecture 5: Neural networks

Mathematical techniques in data science

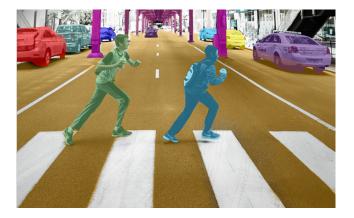
54 / 67



Ξ

イロト イ団ト イヨト イヨト

Image segmentation



э

・ 何 ト ・ ヨ ト ・ ヨ ト

Lecture 5: Neural networks

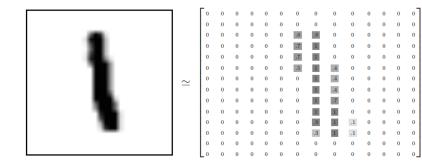
57 / 67

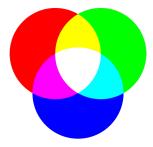
э

<ロト < 回ト < 回ト < 回ト < 回ト < 回ト < </p>

Image style transfer

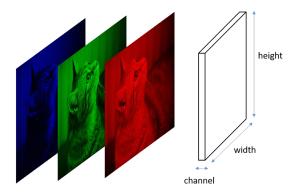
(1) マント (1) マント (1)





- Use RGB color mode
- Represent a color by 3 values: R (Red) G (Green) B (Blue)
- There are other color modes

Image representation



- An image is an H × W × C matrix: H (height), W (width), C (depth or number of channels)
- Grayscale image: C = 1
- RGB image: C = 3

Demo: train an MLP using Keras

sklearn.neural_network.MLPClassifier

class sklearn.neural_network.MLPClassifier(hidden_layer_sizes=(100,), activation='relu', *, solver='adam', alpha=0.0001, batch_size='auto', learning_rate='constant', learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, n_iter_no_change=10, max_fun=15000) [source]

Multi-layer Perceptron classifier.

This model optimizes the log-loss function using LBFGS or stochastic gradient descent.

New in version 0.18.

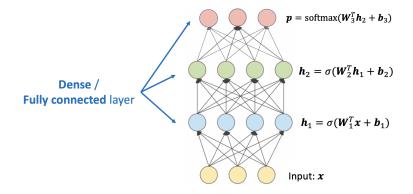
Parameters:	hidden_layer_sizes : tuple, length = n_layers - 2, default=(100,) The ith element represents the number of neurons in the ith hidden layer.			
	activation : {'identity', 'logistic', 'tanh', 'relu'}, default='relu' Activation function for the hidden layer.			
	 'identity', no-op activation, useful to implement linear bottleneck, returns f(x) = x 'logistic', the logistic sigmoid function, returns f(x) = 1 / (1 + exp(-x)). 'tanh', the hyperbolic tan function, returns f(x) = tanh(x). 'relu', the rectified linear unit function, returns f(x) = max(0, x) 			

- High level API for deep learning
- More flexible to define network architecture than sklearn

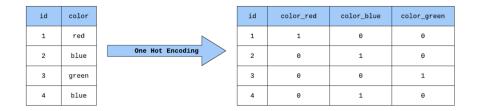
- Define a network as a Sequential object
- Add layers to it one-by-one

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
model = Sequential()
model.add(Dense(50, activation='relu'))
model.add(Dense(50, activation='relu'))
model.add(Dense(10, activation='softmax'))
```

Define network architecture (2)



- - E + - E +



Labels in Keras are usually encoded as one-hot vectors

э

< ロト < 同ト < ヨト < ヨト