Mathematical techniques in data science

Lecture 8: Hypothesis spaces and loss functions Cross-validation

Where are we?

Algorithms

- Intros to classification
- Overfitting and underfitting
- Nearest neighbors
- Logistic regression
- Feed-forward neural networks
- Convolutional neural networks
- Codings
 - Numpy, matplotlib, sklearn
 - Reading sklearn documentations
 - Pre-process inputs (i.e., numpy.shape())
 - Data simulations (by hand or using built-in functions in sklearn)
 - Data splitting
 - Train models; making prediction; evaluate models

• Mathematical techniques in data sciences

- A short introduction to statistical learning theory
- Random forests boosting and bootstrapping
- SVM the kernel trick
- Linear regression regularization and feature selection

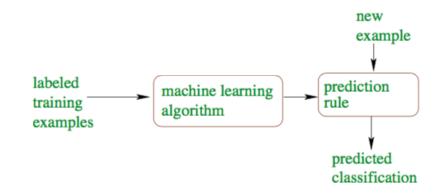
• Algorithms and learning contexts

- PCA and Manifold learning
- Clustering
- Selected topics

A short introduction to statistical learning

Lecture 8: Hypothesis spaces and loss functio Mathematical techniques in data science

Diagram of a typical supervised learning problem



Supervised learning: learning a function that maps an input to an output based on example input-output pairs

- Given: a sequence of label data (x1, y1), (x2, y2), ..., (xn, yn) sampled (independently and identically) from an unknown distribution PX,Y
- Goal: predict the label of new samples (as accurately as possible)

Example

MNIST dataset

- Each image as a vector in $x \in \mathbb{R}^{784}$ and the label as a scalar $y \in \{0, 1, \dots, 9\}$
- Goal: learn to identify/predict digits (as accurately as possible)

- Given: a sequence of label data (x1, y1), (x2, y2), ..., (xn, yn) sampled (independently and identically) from an unknown distribution PX,Y
- Goal: predict the label of new samples (as accurately as possible)
- Question:
 - How to make predictions?
 - What do you mean by "as accurately as possible?"

- Given: a sequence of label data (x1, y1), (x2, y2), ..., (xn, yn) sampled (independently and identically) from an unknown distribution PX,Y
- Goal: a learning algorithm seeks a function $h : \mathcal{X} \to \mathcal{Y}$, where \mathcal{X} is the input space and \mathcal{Y} is the output space
- The function *h* is an element of some space of possible functions *H*, usually called the *hypothesis space*
- Usually, this hypothesis space can be indexed by some parameters (often specified by a model or a learning algorithm)

Hypothesis space: logistic regression

- Two classes: 0 and 1
- $x \in \mathbb{R}^d$
- Probability model

$$p_{w,b}(x) = \frac{1}{1 + e^{-w^T x - b}}$$

- Prediction rule $h_{w,b}(x)$
 - If $p_{w,b}(x) > 0.5$, predict $h_{w,b}(x) = 1$
 - If $p_{w,b}(x) \le 0.5$, predict $h_{w,b}(x) = 0$
- Hypothesis space

$$\mathcal{H} = \{h_{w,b} : w \in \mathbb{R}^d, b \in \mathbb{R}\}$$

- The function *h* is an element of some space of possible functions *H*, usually called the *hypothesis space*
- In order to measure how well a function fits the data, a loss function

$$L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^{\geq 0}$$

is defined

• In order to measure how well a function fits the data, a loss function

$$L: \mathcal{Y} imes \mathcal{Y} o \mathbb{R}^{\geq 0}$$

is defined

• For regression:

$$L(h(x), y) = [h(x) - y]^2$$

• For classification: the 0-1 loss and the binary-cross-entropy loss

$$L(h(x), y) = \begin{cases} 0, & \text{if } h(x) = y \\ 1 & \text{otherwise} \end{cases}$$

$$L(p(x), y) = -y \ \log(p(x)) - (1 - y) \ \log(1 - p(x))$$

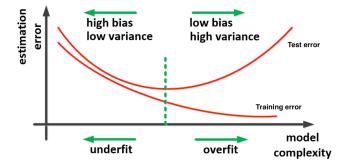
- The function *h* is an element of some space of possible functions *H*, usually called the *hypothesis space*
- In order to measure how well a function fits the data, a loss function

$$L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^{\geq 0}$$

is defined

- It is straightforward that we want to have a hypothesis with minimal loss
- Question: minimal loss on which dataset?

Underfiting/Overfitting



1

- Assumption: The future samples will be obtained from the same distribution $P_{X,Y}$ of the training data
- With a pre-defined loss function, the risk function is defined as

$$R(h) = E_{(X,Y)\sim P}[L(h(X),Y)]$$

• The "optimal hypothesis", denoted by h^* in this lecture, is the minimizer over \mathcal{H} of the risk function

$$h^* = rg\min_{h \in \mathcal{H}} R(h)$$

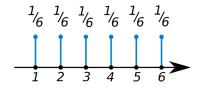
Review: Probability

Lecture 8: Hypothesis spaces and loss functio Mathematical techniques in data science

臣

э

Discrete random variable



• Probability of an event A:

$$P(A) = \sum_{x \in A} P(x)$$

Example: $P({X is even}) = P(2) + P(4) + P(6) = 1/2$

• Sometimes we write P(X = x) for P(x), for example, P(X = 2) = P(2).

Continuous random variable

- Sample space is continuous (real values)
- Characterized by a density function *P*:
 - $P(x) \ge 0$ for all $x \in \mathbb{R}$ $\int_{-\infty}^{\infty} P(x) dx = 1$

 - For any fixed constant a, b,

$$P(a \le X \le b) = \int_a^b P(x) \ dx$$

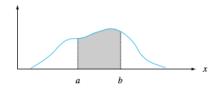


Figure 4.2 $P(a \le X \le b)$ = the area under the density curve between a and b

Expectation of random variables

• Expectation (expected value or mean) of a discrete random variable X:

$$E[X] = \sum_{x} xP(x) = \sum_{i=1}^{n} x_i P(x_i)$$

• For continuous variables:

$$E[X] = \int_{X} x P(x) dx$$

• Can be used for functions:

$$E[g(X)] = \sum_{x} g(x) P(x)$$

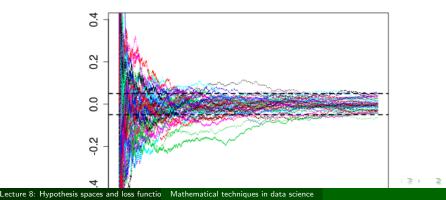
or

$$E[g(X)] = \int_{X} g(x) P(x) dx$$

Law of large numbers

THEOREM

- If X_1, X_2, \ldots, X_n is a random sample from a distribution with mean μ and ν ance σ^2 , then \overline{X} converges to μ
- **a.** In mean square $E[(\overline{X} \mu)^2] \rightarrow 0$ as $n \rightarrow \infty$
- **b.** In probability $P(|\overline{X} \mu| \ge \varepsilon) \to 0 \text{ as } n \to \infty$



Empirical risk

Lecture 8: Hypothesis spaces and loss functio Mathematical techniques in data science

E

< ロ ト < 団 ト < 三 ト < 三 ト</p>

• Since *P* is unknown, the simplest approach is to approximate the risk function by the empirical risk

$$R_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x_i), y_i)$$

• Rationale: The law of large number – If the random variables Z_1, Z_2, \ldots, Z_n are drawn independently from the same distribution P_Z , then

$$\frac{Z_1+Z_2+\ldots Z_n}{n}\approx E[Z]$$

• Empirical risk minimizer (ERM): minimizer of the empirical risk function

$$R_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x_i), y_i)$$

• The risk function is defined as

$$R(h) = E_{(X,Y)\sim P}[L(h(X),Y)]$$

- Rationale: $R_n(h) \approx R(h)$
- In this lecture, we use the notation \hat{h}_n to denote the ERM
- We hope that

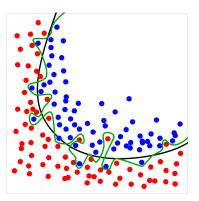
$$R(\hat{h}_n) \approx R(h^*)$$

• Note: \hat{h}_n is random, while h^* is a fixed hypothesis

We hope that

$$R(\hat{h}_n) \approx R(h^*),$$

but in general, this might not be true if the hypothesis space ${\mathcal H}$ is too large



• We hope that

$$R(\hat{h}_n) \approx R(h^*),$$

but in general, this might not be true if the hypothesis space $\ensuremath{\mathcal{H}}$ is too large

- Question: What does "too large" mean?
- We need to be able to quantify/control the difference between $R(\hat{h}_n)$ and $R(h^*)$

K-fold cross-validation:

Split data into K equal (or almost equal) parts/folds at random. for each parameter λ_i do

for $j = 1, \ldots, K$ do

Fit model on data with fold j removed.

Test model on remaining fold $\rightarrow j\text{-th}$ test error.

end for

Compute average test errors for parameter λ_i .

end for

Pick parameter with smallest average error.

K-fold cross-validation

More precisely,

• Split data into K folds F_1, \ldots, F_K .

1	2	3	4	5
Train	Train	Validation	Train	Train

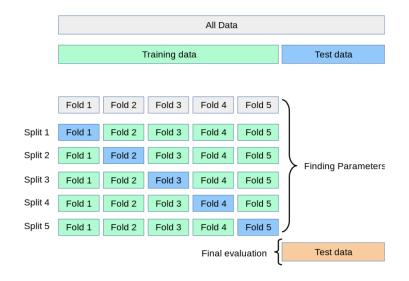
Let L(y, ŷ) be a loss function. For example, L(y, ŷ) = ||y - ŷ||²₂ = ∑ⁿ_{i=1}(y_i - ŷ_i)².
Let f^{-k}_λ(x) be the model fitted on all, but the k-th fold.
Let

$$CV(\lambda) := \frac{1}{n} \sum_{k=1}^{n} \sum_{i \in F_k} L(y_i, f_{\lambda}^{-i}(\mathbf{x}_i))$$

• Pick λ among a *relevant* set of parameters

$$\hat{\lambda} = \operatorname*{argmin}_{\lambda \in \{\lambda_1, \dots, \lambda_m\}} CV(\lambda)$$

K-fold cross-validation



э

イロト イポト イヨト イヨト