
Mathematical techniques in data science
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Where are we?

Algorithms

Intros to classification
Overfitting and underfitting
Nearest neighbors
Logistic regression
Feed-forward neural networks
Convolutional neural networks

Codings

Numpy, matplotlib, sklearn
Reading sklearn documentations
Pre-process inputs (i.e., numpy.shape())
Data simulations (by hand or using built-in functions in sklearn)
Data splitting
Train models; making prediction; evaluate models
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What’s next?

Mathematical techniques in data sciences

A short introduction to statistical learning theory
Random forests — boosting and bootstrapping
SVM – the kernel trick
Linear regression – regularization and feature selection

Algorithms and learning contexts

PCA and Manifold learning
Clustering
Selected topics
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A short introduction to statistical learning
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Diagram of a typical supervised learning problem

Supervised learning: learning a function that maps an input to an output
based on example input-output pairs
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Supervised learning: standard setting

Given: a sequence of label data (x1, y1), (x2, y2), . . . , (xn, yn) sampled
(independently and identically) from an unknown distribution PX ,Y

Goal: predict the label of new samples (as accurately as possible)

Lecture 8: Hypothesis spaces and loss functions Cross-validationMathematical techniques in data science 6 / 28



Example

MNIST dataset

Each image as a vector in x ∈ R784 and the label as a scalar
y ∈ {0, 1, . . . , 9}
Goal: learn to identify/predict digits (as accurately as possible)
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Supervised learning: standard setting

Given: a sequence of label data (x1, y1), (x2, y2), . . . , (xn, yn) sampled
(independently and identically) from an unknown distribution PX ,Y

Goal: predict the label of new samples (as accurately as possible)

Question:

How to make predictions?
What do you mean by“as accurately as possible?”

Lecture 8: Hypothesis spaces and loss functions Cross-validationMathematical techniques in data science 8 / 28



Hypothesis space

Given: a sequence of label data (x1, y1), (x2, y2), . . . , (xn, yn) sampled
(independently and identically) from an unknown distribution PX ,Y

Goal: a learning algorithm seeks a function h : X → Y, where X is
the input space and Y is the output space

The function h is an element of some space of possible functions H,
usually called the hypothesis space

Usually, this hypothesis space can be indexed by some parameters
(often specified by a model or a learning algorithm)
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Hypothesis space: logistic regression

Two classes: 0 and 1

x ∈ Rd

Probability model

pw ,b(x) =
1

1 + e−wT x−b

Prediction rule hw ,b(x)

If pw ,b(x) > 0.5, predict hw ,b(x) = 1
If pw ,b(x) ≤ 0.5, predict hw ,b(x) = 0

Hypothesis space

H = {hw ,b : w ∈ Rd , b ∈ R}
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Loss function

The function h is an element of some space of possible functions H,
usually called the hypothesis space

In order to measure how well a function fits the data, a loss function

L : Y × Y → R≥0

is defined
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Loss function: examples

In order to measure how well a function fits the data, a loss function

L : Y × Y → R≥0

is defined

For regression:
L(h(x), y) = [h(x)− y ]2

For classification: the 0-1 loss and the binary-cross-entropy loss

L(h(x), y) =

{
0, if h(x) = y

1 otherwise

L(p(x), y) = −y log(p(x))− (1− y) log(1− p(x))
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Loss function

The function h is an element of some space of possible functions H,
usually called the hypothesis space

In order to measure how well a function fits the data, a loss function

L : Y × Y → R≥0

is defined

It is straightforward that we want to have a hypothesis with minimal
loss

Question: minimal loss on which dataset?
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Underfiting/Overfitting
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Risk function

Assumption: The future samples will be obtained from the same
distribution PX ,Y of the training data

With a pre-defined loss function, the risk function is defined as

R(h) = E(X ,Y )∼P [L(h(X ),Y )]

The “optimal hypothesis”, denoted by h∗ in this lecture, is the
minimizer over H of the risk function

h∗ = arg min
h∈H

R(h)
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Review: Probability
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Discrete random variable

Probability of an event A:

P(A) =
∑
x∈A

P(x)

Example: P({X is even}) = P(2) + P(4) + P(6) = 1/2

Sometimes we write P(X = x) for P(x), for example,
P(X = 2) = P(2).
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Continuous random variable

Sample space is continuous (real values)

Characterized by a density function P:

P(x) ≥ 0 for all x ∈ R∫∞
−∞ P(x) dx = 1
For any fixed constant a, b,

P(a ≤ X ≤ b) =

∫ b

a

P(x) dx
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Expectation of random variables

Expectation (expected value or mean) of a discrete random variable X:

E [X ] =
∑
x

xP(x) =
n∑

i=1

xiP(xi )

For continuous variables:

E [X ] =

∫
x
xP(x)dx

Can be used for functions:

E [g(X )] =
∑
x

g(x)P(x)

or

E [g(X )] =

∫
x
g(x)P(x)dx
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Law of large numbers
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Empirical risk
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Empirical risk

Since P is unknown, the simplest approach is to approximate the risk
function by the empirical risk

Rn(h) =
1

n

n∑
i=1

L(h(xi ), yi )

Rationale: The law of large number – If the random variables
Z1,Z2, . . . ,Zn are drawn independently from the same distribution
PZ , then

Z1 + Z2 + . . .Zn

n
≈ E [Z ]
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ERM

Empirical risk minimizer (ERM): minimizer of the empirical risk
function

Rn(h) =
1

n

n∑
i=1

L(h(xi ), yi )

The risk function is defined as

R(h) = E(X ,Y )∼P [L(h(X ),Y )]

Rationale: Rn(h) ≈ R(h)

In this lecture, we use the notation ĥn to denote the ERM

We hope that
R(ĥn) ≈ R(h∗)

Note: ĥn is random, while h∗ is a fixed hypothesis
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Failure of ERM

We hope that
R(ĥn) ≈ R(h∗),

but in general, this might not be true if the hypothesis space H is too large
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Failure of ERM

We hope that
R(ĥn) ≈ R(h∗),

but in general, this might not be true if the hypothesis space H is too
large

Question: What does ”too large” mean?

We need to be able to quantify/control the difference between R(ĥn)
and R(h∗)
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K-fold cross-validation
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K-fold cross-validation
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K-fold cross-validation
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