Mathematical techniques in data science

Lecture 10: Boosting

∃ >

- A short introduction to statistical learning theory
- Tree-based methods boosting and bootstrapping
- SVM the kernel trick
- Linear regression regularization and feature selection

Decision trees

E

*ロト *部ト *注ト *注ト

Tree-based methods

- Partition the feature space into a set of rectangles
- Fit a simple model (e.g. a constant) in each rectangle
- Conceptually simple yet powerful

• Advantages:

- Often mimics human decision-making process (e.g. doctor examining patient).
- Very easy to explain and interpret.
- Can handle both regression and classification problems.
- Disadvantage: Basic implementation is generally not competitive compared to other methods.
- However, by aggregating many decision trees and using other variants, one can improve the performance significantly.
- Such techniques may lead to state-of-the-art models. However, in doing so, one loses the easy interpretability of decision trees.

To simplify, we will only consider binary decision trees.

Top Left: Not binary. Top Right: binary.

Bottom Left: Tree corresponding to Top Right partition. Bottom Right: Prediction surface.

< 4 → <

How to grow a decision tree?

Regression tree:

• Data: $y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$.

• Each observation: $(y_i, x_i) \in \mathbb{R}^{p+1}$, $i=1,\ldots,n$.

Suppose we have a partition of \mathbb{R}^p into M regions R_1, \ldots, R_m . We predict the response using a constant on each R_i :

$$f(x) = \sum_{i=1}^{m} c_i \cdot \mathbf{1}_{x \in R_i}.$$

In order to minimize $\sum_{i=1}^n (y_i - f(x_i))^2$, one needs to choose:

$$\hat{c}_i = \operatorname{ave}(y_j : x_j \in R_i).$$

How do we determine the regions R_i , i.e., how do we "grow" the tree?

We need to decide:

- Which variable to split.
- 2 Where to split that variable.

How to grow a decision tree?

- Finding a (globally) optimal tree is generally computationally infeasible.
- We use a greedy algorithm.

Consider a splitting variable $j \in \{1, \dots, p\}$ and splitting point $s \in \mathbb{R}.$

Define the two half-planes:

$$R_1(j,s) := \{ x \in \mathbb{R}^p : x_j \le s \}, \qquad R_2(j,s) := \{ x \in \mathbb{R}^p : x_j > s \}.$$

We choose j, s to minimize

$$\min_{j,s} \left[\min_{c_1 \in \mathbb{R}} \sum_{x_i \in R_1(j,s)} (y_i - c_1)^2 + \min_{c_2 \in \mathbb{R}} \sum_{x_i \in R_2(j,s)} (y_i - c_2)^2 \right].$$

• The determination of the splitting point s can be done very quickly.

• Hence, determining the best pair (j, s) is feasible.

Repeat the same process to each block.

Stoping and pruning

• Generally, the process is stopped for a given region when there are less than 5 observations in that region.

Problem with previous methodology:

- Likely to overfit the data.
- Can lead to poor prediction error.

Pruning the tree. Strategy: Grow a large tree (overfits), and the prune it (better).

• Weakest link pruning:

(a.k.a cost complexity pruning) Let $T \subset T_0$ be a subtree of T_0 with |T|terminal nodes. For $\alpha > 0$, define:

$$C_{\alpha}(T) := \sum_{m=1}^{|T|} \sum_{i:x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha \cdot |T|.$$

Pick a subtree minimizing $C_{\alpha}(T)$.

Pick a subtree $T \subset T_0$ minimizing:

$$C_{\alpha}(T) := \sum_{m=1}^{|T|} \sum_{i:x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha \cdot |T|.$$

(Here, \hat{y}_{R_m} =average response for observations in R_m .)

- α is a tuning parameter.
- Trade-off between fit of the model, and tree complexity.
- Choose α using cross-validation.

Once α has been chosen by CV, use whole dataset to find the tree corresponding to that value.

Classification trees

- So far, we discussed regression trees (continuous output).
- We can easily modify the methodology to predict a *categorical* output.

• We only need to modify our *splitting and pruning criteria*. For continuous variables, we picked a constant in each box R_i to minimize the sum of squares in that region:

$$\min_{c \in \mathbb{R}} \sum_{x_i \in R_i} (y_i - c)^2.$$

As a result, we choose:

$$\hat{c}_i = rac{1}{N_i} \sum_{x_k \in R_i} y_k,$$

where N_i denotes the number of observations in R_i .

Classification trees

Similarly, when the output is categorical, we can count the proportion of class k observations in node i:

$$\hat{p}_{ik} = \frac{1}{N_i} \sum_{x_l \in R_i} \mathbf{1}_{y_l \in R_i}.$$

We then classify the observations in node i using a majority vote:

$$k(i) := \operatorname*{argmax}_{k} \hat{p}_{ik}.$$

Different measures are commonly used to determine how good a given partition is (and how to split a given partition):

- **9** Misclassification error: $\frac{1}{N_i} \sum_{x_l \in R_i} \mathbf{1}_{y_l \neq k(i)} = 1 \hat{p}_{i,k(i)}$.
- **2** Gini index: $\sum_{k=1}^{K} \hat{p}_{ik}(1-\hat{p}_{ik}) = 1 \sum_{k=1}^{K} \hat{p}_{ik}^2$. (Probability that a randomly chosen point is incorrectly classified.)

(Lecture 10: Boosting)

Let us focus on the **top** box.

• (Gini index) Error from classifying according to proportions:

P(error) = P(error|green)P(green) + P(error|blue)P(blue) + P(error|red)P(red)

 $= 3/7 \cdot 4/7 + 6/7 \cdot 1/7 + 5/7 \cdot 2/7 = 4/7.$

• (Entropy) The probability distribution associated to the top box: (4/7, 2/7, 1/7).

Entropy = $-(4/7)\log_2(4/7) - (2/7)\log_2(2/7) - (1/7)\log_2(1/7) \approx 1.38$.

Best case possible: (1,0,0), (0,1,0), (0,0,1). Entropy = 0.

Worst case possible (1/3, 1/3, 1/3). Entropy = 1.58.

- Build a decision tree classifer on the Iris dataset
- Question: Should we use Gini index vs Entropy for the splitting criteria?

・ 何 ト ・ ヨ ト ・ ヨ ト

Bootstrapping, bagging, random forests

- 一司

∃ ▶ ∢

Sampling with replacement

E

イロト イボト イヨト イヨト

Bootstrapping: General statistical method that relies on resampling data with replacement.

Idea: Given data (y_i, x_i) , i = 1, ..., n, construct *bootstrap samples* by sampling n of the observations with replacement (i.e., allow repetitions):

Sample 1	Sample 2	Sample 3
$\left(y_{i_1}, x_{i_1}\right)$	$\left(y_{j_1}, x_{j_1}\right)$	$\left(y_{k_1}, x_{k_1}\right)$
$\left(y_{i_2}, x_{i_2}\right)$	$\left(y_{j_2}, x_{j_2} ight)$	$\left(y_{k_2}, x_{k_2}\right)$
÷	:	:
$\left(y_{i_n}, x_{i_n} ight)$	$\left(y_{j_n}, x_{j_n} ight)$	$\left(y_{k_n}, x_{k_n} ight)$

Bagging:(bootstrap aggregation) Suppose we have a model $y \approx \hat{f}(x)$ for data $(y_i, x_i) \in \mathbb{R}^{p+1}$.

- Construct $B \in \mathbb{N}$ bootstrap samples.
- 2 Train the method on the *b*-th bootstrap sample to get $\hat{f}^{*b}(x)$.
- Ompute the average of the estimators:

$$\hat{f}_{\text{bag}}(x) = \frac{1}{B} \sum_{i=1}^{B} \hat{f}^{*b}(x).$$

- Bagging is often used with regression trees.
- Can improve estimators significantly.

Note: Each bootstrap tree will typically involve different features than the original, and might have a different number of terminal nodes.

The bagged estimate is the average prediction at x from these B trees.

For classification: Use a majority vote from the B trees.

- Idea of bagging: average many noisy but approximately unbiased models, and hence reduce the variance.
- However, the bootstrap trees are generally correlated.
- Random forests improve the variance reduction of bagging by reducing the correlation between the trees.
- Achieved in the tree-growing process through random selection of the input variables.
- Popular method.

Random forests

Random forests: Each time a split in a tree is considered, a random selection of m predictors is chosen as split candidates from the full set of p predictors.

• Typical value for m is \sqrt{p} .

• We construct T_1, \ldots, T_B trees using that method on bootstrap samples. The random forest (regression) predictor is

$$\hat{f}^B_{\mathrm{rf}}(x) = rac{1}{B}\sum_{b=1}^B T_b(x).$$

- accurate and robust
- difficult to interpret compared to a decision tree
- does not suffer from the overfitting problem
- usually have built-in relative feature importance

- slow in generating predictions because it has multiple decision trees
- difficult to interpret compared to a decision tree

- use the California housing dataset
- fit a decision tree
- fit a random forest
- investigate feature importance

Boosting

E

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Convexification of the hypothesis space

Moving out of the hypothesis space

$$H(x) = \sum_{t} \rho_t h_t(x)$$

27 / 41

Algorithm 10.1 AdaBoost.M1.

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
- 2. For m = 1 to M:
 - (a) Fit a classifier G_m(x) to the training data using weights w_i.
 (b) Compute

$$\operatorname{err}_{m} = \frac{\sum_{i=1}^{N} w_{i} I(y_{i} \neq G_{m}(x_{i}))}{\sum_{i=1}^{N} w_{i}}$$

(c) Compute $\alpha_m = \log((1 - \operatorname{err}_m)/\operatorname{err}_m)$.

(d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, \dots, N.$

3. Output
$$G(x) = \text{sign}\left[\sum_{m=1}^{M} \alpha_m G_m(x)\right]$$
.

イロト イポト イヨト イヨト

E

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Ξ

<ロト < 回 ト < 臣 ト < 臣 ト

Ξ

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

E

< ロ ト < 団 ト < 三 ト < 三 ト</p>

- Invent Adaboost, the first successful boosting algorithm [Freund et al., 1996, Freund and Schapire, 1997]
- Formulate Adaboost as gradient descent with a special loss function[Breiman et al., 1998, Breiman, 1999]
- Generalize Adaboost to Gradient Boosting in order to handle a variety of loss functions [Friedman et al., 2000, Friedman, 2001]

Mathematical techniques in data science

35 / 41

E

Gradient Descent

Minimize a function by moving in the opposite direction of the gradient.

$$\theta_i := \theta_i - \rho \frac{\partial J}{\partial \theta_i}$$

Gradient boosting

Boosting: Recursively fit trees to residuals. (Compensate the shortcoming of previous model.) **Input:** $(y_i, x_i) \in \mathbb{R}^{p+1}$, i = 1, ..., n. Initialize $\hat{f}(x) = 0$, $r_i = y_i$.

For b = 1, ..., B:

- Fit a tree estimator \hat{f}^b with d splits to the training data.
- Opdate the estimator using:

$$\hat{f}(x) \leftarrow \hat{f}(x) + \lambda \cdot \hat{f}^{b}(x).$$

Opdate the residuals:

$$r_i \leftarrow r_i - \lambda \cdot \hat{f}^b(x_i).$$

Output: Boosted tree:

$$\hat{f}(x) = \sum_{i=1}^{B} \lambda \hat{f}^{b}(x).$$

Gradient boosting

Algorithm 10.3 Gradient Tree Boosting Algorithm.

- 1. Initialize $f_0(x) = \arg \min_{\gamma} \sum_{i=1}^N L(y_i, \gamma)$.
- 2. For m = 1 to M:

(a) For $i = 1, 2, \ldots, N$ compute

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}$$

- (b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm}, j = 1, 2, ..., J_m$.
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L\left(y_i, f_{m-1}(x_i) + \gamma\right).$$

(d) Update
$$f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm}).$$

sklearn.ensemble: Ensemble Methods

The sklearn.ensemble module includes ensemble-based methods for classification, regression and anomaly detection

User guide: See the Ensemble methods section for further details.

ensemble.AdaBoostClassifier ([])	An AdaBoost classifier.
<pre>ensemble.AdaBoostRegressor ([base_estimator,])</pre>	An AdaBoost regressor.
<pre>ensemble.BaggingClassifier ([base_estimator,])</pre>	A Bagging classifier.
<pre>ensemble.BaggingRegressor ([base_estimator,])</pre>	A Bagging regressor.
<pre>ensemble.ExtraTreesClassifier ([])</pre>	An extra-trees classifier.
<pre>ensemble.ExtraTreesRegressor ([n_estimators,])</pre>	An extra-trees regressor.
<pre>ensemble.GradientBoostingClassifier ([lOSS,])</pre>	Gradient Boosting for classification.
<pre>ensemble.GradientBoostingRegressor ([lOSS,])</pre>	Gradient Boosting for regression.
<pre>ensemble.IsolationForest ([n_estimators,])</pre>	Isolation Forest Algorithm
<pre>ensemble.RandomForestClassifier ([])</pre>	A random forest classifier.
ensemble.RandomForestRegressor ([])	A random forest regressor.
<pre>ensemble.RandomTreesEmbedding ([])</pre>	An ensemble of totally random trees.
<pre>ensemble.VotingClassifier (estimators[,])</pre>	Soft Voting/Majority Rule classifier for unfitted estimators.

э

イロト 不得 トイヨト イヨト

dmlc XGBoost eXtreme Gradient Boosting

build passing build passing 💿 build passing docs passing license Apache 2.0 CRAN 0.82.1 pypi package 0.82

Community | Documentation | Resources | Contributors | Release Notes

XGBoost is an optimized distributed gradient boosting library designed to be highly *efficient*, *flexible* and *portable*. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boost (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on ma distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.

License

© Contributors, 2016. Licensed under an Apache-2 license.