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Mathematical techniques in data sciences

A short introduction to statistical learning theory

Tree-based methods — boosting and bootstrapping

SVM – the kernel trick

Linear regression – regularization and feature selection
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Support Vector Machines

Maximal Margin Classifier

Support Vector Classifiers

Support Vector Machines
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Hyperplane

In a p-dimensional space, a hyperplane is an affine (linear) subspace
of dimension p − 1.

In two dimensions, a hyperplane is defined by the equation

β(0) + β(1)x (1) + β(2)x (2) = 0

In p dimensions:

β(0) + β(1)x (1) + β(2)x (2) + . . .+ β(p)x (p) = 0

or alternatively

β(0) + βT x = 0, where β ∈ Rp
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Hyperplane

H = {x ∈ Rp : β(0) + βT x = 0}

If x1, x2 ∈ H, then βT (x1 − x2) = 0 → β is perpendicular to the
hyperplane H
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Hyperplane

If x ∈ Rp, the distance from x to H can be computed by

d(x ,H) =
1

∥β∥
|βT (x − x0)| =

|β0 + βT x |
∥β∥
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Hyperplane
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Separating hyperplane

Suppose we have data with label {−1, 1}, we want to separate the data
using a hyperplane

yi = sign(β(0) + βT xi )
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Separating hyperplane

Problems:

Separating hyperplane may not exist

Assume that the data are perfectly separable by a hyperplane → then
there might exist an infinite number of such hyperplanes
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Maximal Margin Classifier
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Maximal Margin Classifier

Assume that the data are perfectly separable by a hyperplane
The minimal distance from the data to the hyperplane is call the
margin
Maximal margin hyperplane: the separating hyperplane that is
farthest from the training observations
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Maximal Margin Classifier: formulation

Given a set of n training observations x1, . . . , xn ∈ Rp and associated
class labels yi ∈ {−1, 1}
Maximal margin hyperplane:

max
β0,β,M

M

subject to ∥β∥ = 1

and yi (β
(0) + βT xi ) ≥ M ∀i = 1, . . . , n.
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Why?

First, for every separating hyperplane, we want the classifier
associated with the hyperplane to predict the labels correctly, or

yi (β0 + βT xi ) ≥ 0 ∀i = 1, . . . , n.

Second, we want the distance from the points to the hyperplane to be
greater than the margin

|β(0) + βT xi |
∥β∥

≥ M

If we constrain ∥β∥ = 1 then this becomes

yi (β
(0) + βT xi ) ≥ M ∀i = 1, . . . , n.

The idea of MMC is to find the separating hyperplane that maximizes
the margin
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MMC: Alternative form

max
β(0),β,M

M

subject to ∥β∥ = 1

and yi (β
(0) + βT xi ) ≥ M ∀i = 1, . . . , n.

If we remove the constraint ∥β∥ = 1 then the optimization problem
becomes

max
β(0),β,M

M

subject to yi (β
(0) + βT xi ) ≥ M∥β∥ ∀i = 1, . . . , n.
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MMC: Alternative form

max
β(0),β,M

M

subject to yi (β
(0) + βT xi ) ≥ M∥β∥ ∀i = 1, . . . , n.

If we rescale (β(0), β) such that M∥β∥ = 1, then the optimization
problem becomes

min
β(0),β

∥β∥2

subject to yi (β
(0) + βT xi ) ≥ 1 ∀i = 1, . . . , n.

This is a convex optimization problem with a quadratic object and
linear constraints
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Remark: support vectors

In this figure, we see that three training observations are equidistant from
the maximal margin hyperplane and lie along the dashed lines indicating
the width of the margin.
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Support Vector Classifiers
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Realistically, data are not separable by hyperplanes
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MMC is not robust to noises
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Support Vector Classifier

Idea: willing to consider a classifier based on a hyperplane that does
not perfectly separate the two classes

Goals:

Greater robustness to individual observations
Better classification of most of the training observations
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Support Vector Classifier

The hyperplane is chosen to correctly separate most of the training
observations into the two classes, but may mis-classify a few observations

max
β(0),β,M,ϵ1,ϵ2,...,ϵn

M

subject to ∥β∥ = 1

yi (β
(0) + βT xi ) ≥ M(1− ϵi ) ∀i = 1, . . . , n

ϵi ≥ 0,
n∑

i=1

ϵi ≤ C .
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Support Vector Classifier

max
β(0),β,M,ϵ1,ϵ2,...,ϵn

M

subject to ∥β∥ = 1

yi (β
(0) + βT xi ) ≥ M(1− ϵi ) ∀i = 1, . . . , n

ϵi ≥ 0,
n∑

i=1

ϵi ≤ C .

ϵ1, . . . , ϵn are refereed to as slack variables

C can be regarded as a budget for the amount that the margin can
be violated by the n observations
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Slack variables

ϵ1, . . . , ϵn are refereed to as slack variables

If ϵi = 0 , the i th observation is on the correct side of the margin

If ϵi > 0 , the i th observation is on the wrong side of the margin

If ϵi > 1 , the i th observation is on the wrong side of the separating
hyperplane
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Support Vector Classifier
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Budget

C can be regarded as a budget for the amount that the margin can
be violated by the n observations

If C = 0 then there is no budget for violations to the margin
→ ϵi = 0 for all i
→ maximal margin classifier

Budget C increases → more tolerant of violations to the margin →
margin will widen

is a tunable parameter, usually chosen by cross-validation
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SVC: alternative form

The hyperplane is chosen to correctly separate most of the training
observations into the two classes, but may misclassify a few observations

min
β(0),β,ϵ1,ϵ2,...,ϵn

∥β∥2

subject to yi (β
(0) + βT xi ) ≥ (1− ϵi ) ∀i = 1, . . . , n

ϵi ≥ 0,
n∑

i=1

ϵi ≤ C .

Can be solved using standard optimization packages.
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Support Vector Machine
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Realistically, the boundary may be non-linear
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Idea: map the learning problem to a higher dimension

f (x , y) = (x , y , x2 + y2)
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Idea: map the learning problem to a higher dimension

More rigorously,
f (x , y) = (x , y , x2, y2, xy)

A hyperplane on R5, modeled by the equation β(0) + βT x = 0 will classify
the points based on the sign of

β(0) + β(1)x + β(2)y + β(3)x2 + β(4)y2 + β(5)xy

This corresponds to a quadratic boundary on the original space R2
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How to solve SVM’s optimization
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MMC

Problem:

min
β0,β

∥β∥2

subject to yi (β0 + βT xi ) ≥ 1 ∀i = 1, . . . , n.
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Alternative form

Lagrange multiplier:

L(β, α) =
1

2
∥β∥2 −

n∑
i=1

αi [yi (β0 + βT xi )− 1], where αi ≥ 0

New problem:
min
β

max
α

L(β, α)

Idea:

Consider a game with two players, Mindy and Max,

Mindy goes first, choosing β. Max, observing Mindy’s choice, selects
α to maximize L(β, α)

Mindy, aware of Max’s strategy, makes her initial choice to minimize
L(β, α)
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Minimax theory

Minimax theory: for some class of functions:

min
β

max
α

L(β, α) = max
α

min
β

L(β, α)

Recall:

L(β, α) =
1

2
∥β∥2 −

n∑
i=1

αi [yi (β0 + βT xi )− 1], where αi ≥ 0

Question: Given α, what is the optimal value of β?
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Minimax theory

Recall:

L(β, α) =
1

2
∥β∥2 −

n∑
i=1

αi [yi (β0 + βT xi )− 1], where αi ≥ 0

Question: Given α, what is the optimal value of β?

∂L

∂β(j)
= β(j) −

n∑
i=1

αiyix
(j)
i

∂L

∂β0
=

n∑
i=1

αiyi

Conclusion

β∗ =
n∑

i=1

αiyixi
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Minimax theory

Conclusion

β∗ =
n∑

i=1

αiyixi

Put this back into the expression of L:

max
α≥0

n∑
i=1

αi −
1

2

n∑
i ,j=1

αiαjyiyjx
T
i xj ,

Conclusion: To solve the MMC’s optimization problem, we just need to
have information about

xTi xj = ⟨xi , xj⟩ ∀i , j
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...back to SVM
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Idea: map the learning problem to a higher dimension

When mapping x to f (x) in a higher dimensions, make sure you can
compute

⟨f (xi ), f (xj)⟩ ∀i , j
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Previous lecture

More rigorously,
f (x , y) = (x , y , x2, y2, xy)

A hyperplane on R5, modeled by the equation β0 + βT x = 0 will classify
the points based on the sign of

β0 + β(1)x + β(2)y + β(3)x2 + β(4)y2 + β(5)xy

This corresponds to a quadratic boundary on the original space R2
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A more careful mapping

Define
f (x , y) = (1,

√
2x ,

√
2y , x2, y2,

√
2xy)

A hyperplane on R6, modeled by the equation β0 + βT x = 0 will classify
the points based on the sign of

β0 + β(1) + β(2)x + β(3)y + β(4)x2 + β(5)y2 + β(6)xy

This corresponds to a quadratic boundary on the original space R2
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A more careful mapping

Moreover:

⟨f (x , y), f (u, v)⟩ = 1 + 2xu + 2yv + x2u2 + x2v2 + 2xyuv

= (1 + xu + yv)2

= (1 + ⟨(x , y), (u, v)⟩)2

In other the words,

K (xi , xj) = ⟨f (xi ), f (xj)⟩ = (1 + xTi xj)
2

can be computed quite easily.
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SVM on a higher dimensional space

Recall that in order to solve the optimization of SVM on the original
space, we need to optimize

max
α≥0

n∑
i=1

αi −
n∑

i ,j=1

αiyix
T
i xj ,

If we want to do the same thing with the mapped data

max
α≥0

n∑
i=1

αi −
n∑

i ,j=1

αiyiK (xi , xj),

Bonus: we don’t need to know the form of f at all!
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The kernel trick

We don’t need to know the form of f , only need

K (x , y) = ⟨f (xi ), f (xj)⟩

Question: Given K : Rp × Rp, when can we guarantee that

K (x , y) = ⟨h(xi ), h(xj)⟩

for some function h?
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Kernel: condition

Question: Given K : Rp × Rp, when can we guarantee that

K (x , y) = ⟨h(xi ), h(xj)⟩

for some function h?

Definition

Let X be a set. A symmetric kernel K : X × X → R is said to be a
positive definite kernel if the matrix

[K (xi , xj)]
n
i ,j=1

is positive semi-definite for all x1, . . . , xn and n ∈ N, i.e.∑
i ,j

K (xi , xj)cicj ≥ 0

for any c ∈ Rn.
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Popular kernels

Polynomials
K (x , u) = [1 + ⟨x , u⟩]d

RBF (Gaussian) kernels

K (x , u) = e−γ∥x−u∥2

Neural network

K (x , u) = tanh(κ1⟨x , u⟩+ κ2)
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SVM
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