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Mathematical techniques in data sciences

A short introduction to statistical learning theory

Tree-based methods — boosting and bootstrapping

SVM – the kernel trick

Linear regression – regularization and feature selection
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The story so far...
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Failure of ERM

We hope that
R(ĥn) ≈ R(h∗),

but in general, this is not be true if the hypothesis space H is too large

(Lecture 13: Shrinkage methods for linear regression)Mathematical techniques in data science 4 / 59



Underfiting/Overfitting

(Source: IBM)
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Underfiting/Overfitting
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Regularization

If we want ϵ → 0 as n → ∞:

dimension(H) ≪ n

How do we get that?

Model selection

Feature selection

Regularization:

Work for the case dimension(H) ≫ n
Stabilize an estimator → force it to live in a neighborhood of a
lower-dimensional surface
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Regularization: LR
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Regularization: SVM
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Regularization: MLP
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Regularization: MLP
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Linear regression

(Lecture 13: Shrinkage methods for linear regression)Mathematical techniques in data science 12 / 59



Linear regression

Linear model

Y = β(0) + β(1)X (1) + β(2)X (2) + . . . β(p)X (p) + ϵ

p: number of variables (X ∈ Rp)

n: number of observations
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Classical setting

Linear model

Y = β(0) + β(1)X (1) + β(2)X (2) + . . . β(p)X (p)

n ≫ p (n much larger than p). With enough observations, we hope
to be able to build a good model

even if the true relationship between the variables is not linear, we
can include transformations of variables

X (p+1) = [X (1)]2, X (p+2) = X (1)X (3), . . .

adding transformed variables can increase p significantly
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Trade-off: complexity vs. interpretability

Linear model

Y = β(1)X (1) + β(2)X (2) + . . . β(p)X (p) + ϵ

Higher values of p lead to more complex model → increases
prediction power/accuracy

Higher values of p make it more difficult to interpret the model: It is
often the case that some or many of the variables regression model
are in fact not associated with the response
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Moderns settings

Linear model

Y = β(0) + β(1)X (1) + β(2)X (2) + . . . β(p)X (p) + ϵ

it is often the case that n ≪ p

requires supplementary assumptions (e.g. sparsity)

can still build good models with very few observations.
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Linear regression by least squares
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Settings

Y ∈ Rn×1, X ∈ Rn×(p+1)

Y =


y1
y2
. . .
yn

 X =

 1 | | . . . |
. . . x (1) x (2) . . . x (p)

1 | | . . . |


where x (1), x (2), . . . , x (p) ∈ Rn×1 are the observations of
X (1),X (2), . . . ,X (p).

We want

Y = β(0) + β(1)X (1) + β(2)X (2) + . . . β(p)X (p)
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Settings

We want

Y = β(0) + β(1)X (1) + β(2)X (2) + . . . β(p)X (p)

Equivalent to

Y = Xβ, β =


β(0)

β(1)

. . .

β(p)


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Least squares

Y = Xβ

In general, the system has no solution (n ≫ p ) or infinitely many
solutions (n ≪ p)

The most popular estimation method is least squares, in which we
pick the coefficients to minimize the residual sum of squares

RSS(β) =
n∑

i=1

(yi − f (xi ))
2
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Least squares
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Least squares

Minimize the residual sum of squares

RSS(β) =
n∑

i=1

(yi − f (xi ))
2

Or alternatively,
β̂ = min

β
∥Y − Xβ∥22
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Least squares

Minimize the residual sum of squares

RSS(β) =
n∑

i=1

(yi − f (xi ))
2

=
n∑

i=1

(
yi − β(0) − β(1)x

(1)
i − β(2)x

(2)
i − . . .− β(p)x

(p)
i

)2

Taking derivative

∂RSS

∂β(j)
=

n∑
i=1

2(yi − xiβ)x
(j)
i = 2[x (j)]T (Y − Xβ)
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Least squares

Set derivatives to zero

XT (Y − Xβ) = 0

If XTX is invertible
β̂ = (XTX )−1XTY

Predicted values

Ŷ = Xtest β̂ = Xtest(X
T
trainXtrain)

−1XT
trainYtrain
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The coefficient of determination

The coefficient of determination, called “R squared” and denoted by

R2 = 1−
∑n

i=1 (yi − ŷi )
2∑n

i=1 (yi − ȳ)2

where ȳ is the average of y1, . . . , yn

Often used to measure the quality of a linear model

A model with a R2 close to 1 fit the data well.
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The coefficient of determination

In some sense, the R2 measures how much better is the prediction
compared to a constant prediction
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The adjusted coefficient of multiple determination

It is desirable to adjust R2 to take account of the fact that its value
may be quite high just because many predictors were used relative to
the amount of data

The adjusted coefficient of multiple determination

R2
a = 1−

1
n−p−1

∑n
i=1 (yi − ŷi )

2

1
n−1

∑n
i=1 (yi − ȳ)2

where ȳ is the average of y1, . . . , yn
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sklearn.linear model.LinearRegression
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sklearn.preprocessing.PolynomialFeatures
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Questions

Is at least one of the predictors X1,X2, . . . ,Xp useful in predicting the
response?

Do all the predictors help to explain Y , or is only a subset of the
predictors useful?
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Subset selection
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Trade-off: complexity vs. interpretability

Linear model

Y = β(1)X (1) + β(2)X (2) + . . . β(p)X (p) + ϵ

Higher values of p lead to more complex model → increases
prediction power/accuracy

Higher values of p make it more difficult to interpret the model

Ideally, we would like to try out a lot of different models, each
containing a different subset of the predictors, then select the best
model

Problem: there are 2p models that contain subsets of p variables
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Best subset selection
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Forward stepwise selection
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Backward stepwise selection
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Hybrid approach

Hybrid versions of forward and backward stepwise selection are
available

variables are added to the model sequentially

after adding each new variable, the method may also remove any
variables that no longer provide an improvement in the model fit
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Adjusted training errors

Adjusted R2

Mallow’s Cp

Cp =
1

n
(RSS + 2d σ̂2)

where σ̂2 is an estimate of the variance of the error, d is the number
of predictors

AIC (Akaike information criterion)

AIC =
1

nσ̂2
(RSS + 2d σ̂2)

BIC (Bayesian information criterion)

BIC =
1

nσ̂2
(RSS + log(n)σ̂2)
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sklearn does not support subset selection
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Shrinkage methods
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Settings

Y ∈ Rn×1, X ∈ Rn×(p+1)

Y =


y1
y2
. . .
yn

 X =

 1 | | . . . |
. . . x (1) x (2) . . . x (p)

1 | | . . . |


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Linear model: settings

Linear model

Y = β(0) + β(1)X (1) + β(2)X (2) + . . . β(p)X (p) + ϵ

Equivalent to

Y = Xβ, β =


β(0)

β(1)

. . .

β(p)


Least squares regression

β̂LS = min
β

∥Y− Xβ∥22
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ℓ0 regularization

ℓ0 regularization

β̂0 = min
β

∥Y− Xβ∥22 + λ

p∑
i=1

1β(i) ̸=0

where λ > 0 is a parameter

pay a fixed price λ for including a given variable into the model

variables that do not significantly contribute to reducing the error are
excluded from the model (i.e., βi = 0)

problem: difficult to solve (combinatorial optimization). Cannot be
solved efficiently for a large number of variables.
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ℓ2 (Tikhonov) regularization

Ridge regression/ Tikhonov regularization

β̂RIDGE = min
β

∥Y− Xβ∥22 + λ

p∑
j=1

[β(j)]2

where λ > 0 is a parameter

shrinks the coefficients by imposing a penalty on their size

penalty is a smooth function.

easy to solve (solution can be written in closed form)

can be used to regularize a rank deficient problem (n < p)
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ℓ2 (Tikhonov) regularization

∂
(
∥Y− Xβ∥22 + λ∥β∥2

)
∂β

= 2XT (Y− Xβ) + 2λβ

The critical point satisfies

(XTX+ λI)β = XTY

Note: (XTX+ λI) is positive definite, and thus invertible

Thus
β̂RIDGE = (XTX+ λI)−1XTY

(Lecture 13: Shrinkage methods for linear regression)Mathematical techniques in data science 44 / 59



ℓ2 (Tikhonov) regularization

β̂RIDGE = (XTX+ λI)−1XTY

When λ > 0, the estimator is defined even when n < p

When λ = 0 and n > p, we recover the usual least squares solution
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The Lasso
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Lasso

The Lasso (Least Absolute Shrinkage and Selection Operator)

β̂lasso = min
β

∥Y− Xβ∥22 + λ

p∑
j=1

|β(j)|

As with ridge regression, the lasso shrinks the coefficient estimates
towards zero

However, the ℓ1 penalty has the effect of forcing some of the
coefficient estimates to be exactly equal to zero when λ is sufficiently
large

the lasso performs variable selection → models are easier to interpret
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Lasso: alternative form

Alternative form of lasso (using the Lagrangian and min-max argument)

min
β

∥Y− Xβ∥22

subject to

p∑
j=1

|β(j)| ≤ s
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Lasso: alternative form
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Lasso

The Lasso:

β̂lasso = min
β

∥Y− Xβ∥22 + λ

p∑
j=1

|β(j)|

More “global” approach to selecting variables compared to previously
discussed greedy approaches

Can be seen as a convex relaxation of the β̂0 problem

No closed form solution, but can solved efficiently using convex
optimization methods.

Performs well in practice

Very popular. Active area of research
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Other shrinkage methods

ℓq regularization (q ≥ 0):

β̂ = min
β

∥Y− Xβ∥22 + λ

p∑
j=1

[β(j)]q
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Other shrinkage methods

Elastic net

λ

p∑
j=1

α[β(j)]2 + (1− α)|β(j)|
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Lasso: alternative form

Alternative form of lasso (using the Lagrangian and min-max argument)

min
β

∥Y− Xβ∥22

subject to

p∑
j=1

|β(j)| ≤ s
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Lasso: alternative form
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Linear model: settings

Linear model

Y = β(0) + β(1)X (1) + β(2)X (2) + . . . β(p)X (p) + ϵ

Equivalent to

Y = Xβ, β =


β(0)

β(1)

. . .

β(p)


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Trade-off: complexity vs. interpretability

Linear model

Y = β(1)X (1) + β(2)X (2) + . . . β(p)X (p) + ϵ

Higher values of p lead to more complex model → increases
prediction power/accuracy

Higher values of p make it more difficult to interpret the model
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Regularization

ℓ0 regularization

β̂0 = min
β

∥Y− Xβ∥22 + λ

p∑
i=1

1β(i) ̸=0

Ridge regression/Tikhonov regularization

β̂RIDGE = min
β

∥Y− Xβ∥22 + λ

p∑
j=1

[β(j)]2

Lasso

β̂lasso = min
β

∥Y− Xβ∥22 + λ

p∑
j=1

|β(j)|
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Choosing parameters: cross-validation

ℓ0, ridge, lasso have regularization parameters λ

We obtain a family of estimators as we vary the parameter(s)

optimal parameters needs to be chosen in a principled way

cross-validation is a popular approach for rigorously choosing
parameters.
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Demo: Cross-validation with Lasso
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