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Linear model: settings

@ Linear model
y =80 4 gMx@) 4 g@x(2) 4 gl xe) 4 ¢

@ Equivalent to

vy_xs - |

@ Least squares regression

ﬂsngW—xm%
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Trade-off: complexity vs. interpretability

Linear model

y = g x® 4 g@x@ 4 g x(P) 4 ¢

@ Higher values of p lead to more complex model — increases
prediction power/accuracy

@ Higher values of p make it more difficult to interpret the model: It is
often the case that some or many of the variables regression model
are in fact not associated with the response
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Moderns settings

Linear model

y =800 4 gMx® 4 g@x(2) 1 gl xP) 4 ¢

@ it is often the case that n < p
@ requires supplementary assumptions (e.g. sparsity)
@ can still build good models with very few observations.
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¢y regularization

@ /gy regularization

P
B = min 1Y = XBII5+ A 1404
i=1
where A\ > 0 is a parameter
@ pay a fixed price A for including a given variable into the model

@ variables that do not significantly contribute to reducing the error are
excluded from the model (i.e., 8; = 0)

e problem: difficult to solve (combinatorial optimization). Cannot be
solved efficiently for a large number of variables.
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5 (Tikhonov) regularization

@ Ridge regression/ Tikhonov regularization

BRIDGE _ mlnHY XB|]2+)\Z[,B(J)]2
j=1

where A > 0 is a parameter
shrinks the coefficients by imposing a penalty on their size
penalty is a smooth function.

easy to solve (solution can be written in closed form)

can be used to regularize a rank deficient problem (n < p)
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5 (Tikhonov) regularization

o (IY — X8l + AlIsI?)

_ T _
o = 2XT(Y — XB3) + 2)\8

@ The critical point satisfies
(XTX+ A =XTY

o Note: (XTX 4 Al) is positive definite, and thus invertible

@ Thus
BRIDGE — (xTx 4+ )\I)_leY
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5 (Tikhonov) regularization

BRIDGE _ (XTX+ )\l)_leY

@ When X > 0, the estimator is defined even when n < p

@ When A =0 and n > p, we recover the usual least squares solution
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The Lasso
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Lasso

@ The Lasso (Least Absolute Shrinkage and Selection Operator)

1%
plasso — min ¥ - XBI5+ XY 189

j=1
@ As with ridge regression, the lasso shrinks the coefficient estimates
towards zero

@ However, the ¢ penalty has the effect of forcing some of the
coefficient estimates to be exactly equal to zero when A is sufficiently
large

@ the lasso performs variable selection — models are easier to interpret
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Lasso: alternative form

Alternative form of lasso (using the Lagrangian and min-max argument)

min [Y = X313

p
subject to Z 189 <'s
j=1
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Lasso: alternative form

By By

FIGURE 68.7. Confours of the error and constraint funclions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint re-
gions, |51| + |532| < & and B3 + 8% < s, while the red ellipses are the contours of
the RSS.
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Lasso

@ The Lasso: »
Blasso —minllY = X 2 + A )
in|[Y = XBI3+ 2 |5V
j=1
@ More “global” approach to selecting variables compared to previously
discussed greedy approaches
o Can be seen as a convex relaxation of the 3° problem

@ No closed form solution, but can solved efficiently using convex
optimization methods.

@ Performs well in practice

@ Very popular. Active area of research
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Other shrinkage methods

@ /4 regularization (g > 0):

P
B = min Y - XB[I5+ XY [8Y]

j=1

4 qg=2 g=1 qg=0.5 q=0.1

A
l

FIGURE 3.12. Contours of constant value of Z;— |8;]7 for given values of q.
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Other shrinkage methods

@ Elastic net

P
AD_alBVP + (1 - a) 59
j=1

q=1.2 a = 0.2
| /T\
| \V
Ly Elastic Met

FIGURE 3.13. Contours of constant value of Z; B;1% for g = 1.2 {left plot),
and the elastic-net penalty 3 (a7 +(1—a)|8;|) for o = 0.2 (right plot). Although

visually very similar, the elastic-net has sharp (non-differentiable) corners, while
the g = 1.2 penally does not.
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Lasso: alternative form

Alternative form of lasso (using the Lagrangian and min-max argument)

min [Y = X313

p
subject to Z 189 <'s
j=1
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Lasso: alternative form

By By

FIGURE 68.7. Confours of the error and constraint funclions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint re-
gions, |51| + |532| < & and B3 + 8% < s, while the red ellipses are the contours of
the RSS.
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When the lasso fails
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When the lasso fails
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Lasso: model consistenc
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Model selection consistency lasso

@ Note: Model consistency of lasso

@ Further readings:
e Zhao and Yu (2006)
o Wainright (2009)
o Sparsity, the lasso, and friends (Ryan Tibshirani)
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o We start with the simple linear regression problem
y = sXM 4 5@ XA L e e~ N(0,0?)

@ Sparsity: assume that the data is generated using the “true” vector of
parameters 5* = (5*(1),0).

o We assume that E[X(V] = E[X(®)] = 0.
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@ we observe a dataset (x1,y1), (x2,y2), .-, (Xn, ¥n)

@ use the same notations as in the previous lectures

351 FORNC)
Y= | X=1.. ..

- 1 @)

i X5 Xp
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The lasso estimator solves the optimization problem
~ o1
B = min SIY = X8I+ A(180| + 52).

We want to investigate the conditions under which we can verify that

sign(B(l)) = sign(B*(l)) and A® =0
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Sub-gradient

Issue: the penalty of lasso is non-differentiable

Definition
We say that a vector s € RP is a subgradient for the /1-norm evaluated at
B € RP, written as s € 9||f|| if for i =1,..., p we have

s0) = sign(8) if ) £0 and s e[~1,1] otherwise.
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Properties of lasso solutions

(a) A vector 3 solve the lasso program if and only if there exists a
z € 0||5|| such that

XT(Y —X3)—X2=0 (0.1)

(b) Suppose that the subgradient vector satisfies the strict dual feasibility
condition

2] < 1
then any lasso solution [ satisfies 5(2) = 0.

(c) Under the condition of part (b), if X(!) £ 0, then f3 is the unique
lasso solution.
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The primal-dual witness method.

The primal-dual witness (PDW) method consists of constructing a pair of
(8, Z) according to the following steps:

o First, we obtain 3(!) by solving the restricted lasso problem

B(l): min E

jmin o SIY = X813+ A1),

Choose a subgradient 2(1) € R for the ¢1-norm evaluated at 5()

@ Second, we solve for a vector (2 satisfying equation (0.1), and check
whether or not the dual feasibility condition [2(?)| < 1 is satisfied

@ Third, we check whether the sign consistency condition
2 = sign(p*M)

is satisfied.
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@ This procedure is not a practical method for solving the ¢1-regularized
optimization problem, since solving the restricted problem in Step 1
requires knowledge about the sparsity of g*

@ Rather, the utility of this constructive procedure is as a proof
technique: it succeeds if and only if the lasso has a optimal solution
with the correct signed support.
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A more detailed computation

We note that the matrix form of equation (0.1) can be written as
XO)T (Y — xW M) — x5y — x2(1) = ¢

X7 (Y — xW M) — x5y — x2() = ¢

To simplify the notation, we denote

Cj = X T(X0)
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o we find SV and (1) that satisfies
XDy — XMWy — x50 = ¢

@ Moreover, to make sure that the sign consistency in Step 3 is
satisfied, we impose that

70 = sign(gM) and O C LIXOTY — Asign(s*M)).
This is acceptable as long as #(1) € 9|5(M|. That is,

sign(51) = sign(5*V)
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@ Step 2:
[XPT (Y = XMWy — \5() = o

@ Choose
52) _ i[x(z)]r(y VOE N

We want |#(2)] < 1.
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In principle, we want two conditions:
o sign(8*V) = sign(8*®) + A)
where
A = (XN Te — Asign(5*D)))
o 29| < 1 where

50— %[X@)]T(X(l)A +o)
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Zero-noise setting

@ we assume that the observations are collected with no noise (e = 0).
@ Then
A = —Ciy" Asign(5°Y)

and

50) _ _71C21A = Cu Ciitsign(8"V)

@ Conditions

o Mutual incoherence: |Cy Cjjt| < 1.
o Minimum signal: |3*®)| > AC;!
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Co-linearity

o Mutual incoherence: |Cy C;7t| < 1.

@ Recall that
Cio = [XW)T[X@] = 3 5D

@ When n is large
1
~Ciz~ E ([x(l)]T[x(2>]) — Cov(XW, x@)

since E[XM] = E[X?®] = 0.
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e Mutual incoherence: |Gy Cfl1| < 1.
The condition roughly means that the covariance between the
variables X(1) and X3 are less than the variance of X(1)
o Minimum signal: |3*()| > AC7*
Since 1
;Cll — Var(X(l)),

this means that when n — 0o, we needs

ﬁ—>0
n
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In principle, we want two conditions:

o sign(3*(M) = sign(3*® + A)
where

A = C (XD Te = Asign(5*1))))
o || < 1 where
5 = %[x@)]T(x(l)A +¢)

@ We want an upper bound on

XM Te  and[X?)]Te
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Properties of Gaussian random variables

In principle, we want two conditions:

° [X(l)]Te is a Gaussian random variable with mean 0 and standard
deviation o || X

@ Thus, there exists a universal constant C such that

XM Te| < CJ\/nVar(X(l)) log (;)

with probability at least 1 — §
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Without loss of generality, assume " = (B, ..., ’;,BEH,...B;)T where B #0 for j=1,.,9
and p7 =0for j=g+1,...,p. Let ﬂ’[‘lj . (ﬂ’l‘,...,ﬁz)‘ and ﬁFZJ . (ﬁ;_l,...,ﬁ;). Now write X, (1)
and Xy, (2) as the first g and last p — g columns of X, respectively and let C" = anTXn. By setting

7y = 1Xa(1)%a(1). G = 1Xa(2)Xa(2), Cf, = X (1) Xa(2) and €3, = 1%a(2)Xa(1). C* can
then be expressed in a block-wise form as follows:

Cﬂ n
"o 11 L2
c=(a &)
Assuming C7, is invertible, we define the following Irrepresentable Conditions
Strong Irrepresentable Condition. There exists a positive constant vector )

€3, (C?l)_lf'ign(ﬁ’[‘n)‘ <1-m,

where 1is a p— g by 1 vector of 1’s and the inequality holds element-wise.
Weak Irrepresentable Condition.

|C§1(Ci'1)’lsign(ﬁ?l))| <1,
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