
Mathematical techniques in data science

Lecture 15: Manifold learning
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Announcements

Note: There are no lecture and office hours on Monday (12/04)

Final project presentations:

Wed (12/06): Group 2
Fri (12/08): Group 3 and Group 5
Mon (12/11): Group 4 and Group 6

Final project report due date: 12/15

Course evaluation is now open
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Topics

By problems:

Classification
Regression
Manifold learning
Clustering

By methods:

Classical regression-based
methods
Tree-based methods
Network-based methods

By meta-level techniques:

Regularization
Kernel methods
Boosting
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Unsupervised learning

Unsupervised learning

learning an unlabelled dataset: we observe a vector of measurements xi
but no associated response Y (i)

searching for indirect hidden structures, patterns or features to analyze
the data

Problems:

Manifold learning
Clustering
Anomoly detection
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Low dimensional structures in data

high-dimensional data often has a low-rank structure

question: how can we discover low dimensional structures in data?
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Some definitions

Metric space: a space on which one can compute the distance
between any two points

Manifold: every point has a neighborhood that is homeomorphic to
an open subset of an Euclidean space

a manifold is locally Euclidean while globally its structure is more
complex

The dimension of a manifold is equal to the dimension of this
Euclidean space
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Manifold learning

learning geometric and topological structures of high-dimensional
manifolds (smooth surfaces)

learning the low-dimensional approximation (or embedding) to
visualize the dataset

learning the mapping from high-dimensional manifold to its
low-dimensional embedding
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Topics

Linear methods

Principal component analysis
Multi-dimensional scaling (MDS)

Non-linear methods

Isomap
Locally linear embedding (LLE)
t-distributed Stochastic Neighbor Embedding (t-SNE)
Spectral embedding
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Principal component analysis (PCA)
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Principal component analysis
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PCA
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PCA: first component
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PCA: second component
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PCA: formulation

We have a random vector X

X =


X (1)

X (2)

...

X (p)


with mean 0 and population variance-covariance matrix

var(X ) = Σ =


σ2
1 σ12 . . . σ1p

σ21 σ2
2 . . . σ2p

...
...

. . .
...

σp1 σp2 . . . σ2
p
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PCA: formulation

Consider the linear combinations

Y (1) = w11X
(1) + w12X

(2) + · · ·+ w1pX
(p)

Y (2) = w21X
(1) + e22X

(2) + · · ·+ w2pX
(p)

. . .

Y (p) = wp1X
(1) + wp2X

(2) + · · ·+ wppX
(p)

then

var(Y (i)) =

p∑
k=1

p∑
l=1

wikwilσkl = wiΣw
T
i

and

cov(Y (i),Y (j)) =

p∑
k=1

p∑
l=1

wikwjlσkl = wiΣw
T
j
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PCA: formulation

Let X ∈ Rn×p

We think of X as n observations of a random vector
(X (1),X (2), . . . ,X (p)) ∈ Rp

Suppose each column has mean 0

We want to find a linear combination

β(1)X (1) + β(2)X (2) + . . .+ β(p)X (p)

with maximum variance.
(Intuition: we look for a direction where the data varies the most.)
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PCA

In practice, we don’t know the covariance matrix Σ = E [XTX ], and
we need to approximate that by

Σ̂ = XTX

We want to solve
w (1) = arg max

∥w∥=1
w Σ̂wT

Note that

n∑
i=1

|⟨xi ,w⟩|2 = ∥XwT∥2 = wXTXwT = wΣ̂wT
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PCA: first component

We solve
w (1) = arg max

∥w∥=1
w Σ̂wT

Known result:
max
∥w∥=1

wAwT = λmax

where λmax is the largest eigenvalue of A, and the equality is obtained
if w is an eigenvector corresponding to λmax
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PCA: second component

We look for a new linear combination of the Xi’s that

is orthogonal to the first principal component, and

maximizes the variance.

In other words
w (2) = arg max

∥w∥=1;w⊥w (1)
w Σ̂wT

Using a similar argument as before, we have

Σ̂w (2) = λ2w
(2)

where λ2 is the second largest eigenvalue
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PCA: high-order components

We solve
w (k+1) = arg max

∥w∥=1;w⊥w (1),...,w (k)
w Σ̂wT

Using the same arguments as before, we have

Σ̂w (k+1) = λk+1w
(k+1)

where λk+1 is the (k + 1)th largest eigenvalue
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PCA: summary
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PCA: summary
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Principal component analysis
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Multidimensional scaling
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Multidimensional scaling (MDS)

is a means of visualizing the level of similarity of individuals of a
dataset

seeks a low-dimensional representation of the data that respects the
distances in the original high-dimensional space

the goal of an MDS analysis is to find a spatial configuration of
objects when all that is known is some measure of their general
(dis)similarity
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Problem settings

The data to be analyzed is a collection of n objects on which a
distance function is defined: dij is the distance between objects i and
object j

Given dij , MDS want to finds vector z1, z2, . . . , zn ∈ Rd such that

dij ≈ ∥zi − zj∥

MDS is formulated as an optimization problem

min
x1,...,xn

∑
i<j

(dij − ∥xi − xj∥)2
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MDS

MDS is formulated as an optimization problem

min
x1,...,xn

∑
i<j

(dij − ∥xi − xj∥)2

the idea is simple, but is easily generalizable
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MDS
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Isometric feature mapping (Isomap)
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Distance on a manifold
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Isomap

Isomap differs from MDS in one vital way - the construction of the
distance matrix.

In MDS, the distance between two points is just the euclidean
distance

In Isomap, the distances between points are the weight of the shortest
path in a point-graph
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Isomap: neighbor graph

For each point, determine either

K nearest neighbors
all points in a fixed radius

Construct a neighborhood graph.

each point is connected to other if it is a K nearest neighbor.
edge length equal to Euclidean distance between the points
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Neighbor graph
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Isomap: compute intrinsic distance

Compute shortest path between two nodes

Dijkstra’s algorithm
Floyd–Warshall algorithm

Compute lower-dimensional embedding using MDS

The graph distance is non-Euclidean, so when embedded back into
Euclidean space, some distortion occur
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Intrinsic distance
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Isomap
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Locally linear embedding
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Locally linear embedding

A manifold is locally Euclidean while globally its structure is more
complex

Locally, the relation between data points in a neighborhood is
linear/affine

Idea: try to preserve this linear structure
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Locally linear embedding
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LLE
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t-distributed stochastic neighbor embedding
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t-SNE

All methods proposed so far are great, and they work well if M is a
manifold of low-dimension (2 dimension)

Sometimes, even if the dimension of M is high, we still want to
embed it to R2 for learning
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t-SNE

There are many problems with embedding high-dimensional manifold
to low-dimensional space

Structural differences

in ten dimensions, it is possible to have 11 data points that are
mutually equidistant
there is no way to model this faithfully in a two-dimensional map

Crowding problem:

the volume of a sphere centered on datapoint i scales as rm, where r is
the radius and m the dimensionality of the sphere
the area of the two-dimensional map that is available to accommodate
moderately distant data points will not be nearly large enough
compared with the area available to accommodate nearby data points
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Stochastic neighbor embedding

converting the high-dimensional Euclidean distances between data
points into conditional probabilities that represent similarities

The similarity of datapoint xj to datapoint xi is the conditional
probability, pj |i , that xi would pick xj as its neighbor if neighbors were
picked in proportion to their probability density under a Gaussian
centered at xi
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Stochastic neighbor embedding

Assume that the data points are mapped to y1, y2, . . . , yn in
low-dimension

we construct a similar quantity for a y

Goal: Minimize the difference between the two probabilities

min
y

∑
i

∑
j

pij log
pij
qij

(Lecture 15: Manifold learning) Mathematical techniques in data science 46 / 59



t-SNE

employ a Student t-distribution with one degree of freedom (which is
the same as a Cauchy distribution) as the heavy-tailed distribution in
the low-dimensional map

Goal: Minimize the difference between the two probabilities

min
y

∑
i

∑
j

pij log
pij
qij
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Visualization of MNIST by t-SNE
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Visualization of MNIST by Isomap
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Laplace eigenmap
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The Laplace-Beltrami operator

Let M be a manifold. We look for a map from the manifold such
that points close together on the manifold are mapped close together

Locally, we have

f (z)− f (x) ≈ ⟨∇f (x), z − x⟩

and ∥∇f (x)∥ is a measure of local distortion by the map

Idea:

min
∥f ∥L2(M)=1

∫
M

∥∇f ∥2
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The Laplace-Beltrami operator

Idea:

min
∥f ∥L2(M)=1

∫
M

∥∇f ∥2

Define
L(f ) = −div∇f

then ∫
M

∥∇f ∥2 =
∫
M

L(f )f
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The Laplace-Beltrami operator

We have ∫
M

∥∇f ∥2 =
∫
M

L(f )f = ⟨L(f ), f ⟩

Problem: in manifold learning, we don’t have information about the
manifold, just a sample of it

Question: how to approximate L(f ) by the samples?
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Heat kernel

In Rm, we know that the heat equation

ut(x , t)− Lu(x , t) = 0

u(x , 0) = f (x)

has solution of the form

u(x , t) =

∫
Ht(x , y)f (y)dy

with

Ht(x , y) ≈ (4πt)−m/2e−
|x−y|2

4t

when t ≈ 0 and x ≈ y , and

lim
t→0

∫
Ht(x , y)f (y)dy = f (x)
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Heat kernel

We deduce that

Lf (x) = Lfu(x , 0) = −ut(x , t)|t=0

≈ 1

t

[
f (x)− (4πt)−m/2

∫
e−

|x−y|2
4t f (y)

]
Sketchy maths

locally, M are just Euclidean space, and heat are transferred in a very
similar way
If t is small, long term interaction on the manifold are killed
Laplace of a constant function is 0
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Approximating the Laplace operator

Lf (x) ≈ 1

t

[
f (x)− (4πt)−m/2

∫
e−

|x−y|2
4t f (y)

]
Sketchy maths

locally, M are just Euclidean space, and heat are transferred in a very
similar way
If t is small, long term interactions on the manifold are killed
Laplace of a constant function is 0

Then Lf (xi ) can be approximate by

C

f (xi ) ∑
0<|xi−xj |<ϵ

e−
|x−y|2

4t −
∑

0<|xi−xj |<ϵ

e−
|xi−xj |

2

4t f (xj)
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Approximating the Laplace operator

Lf (xi ) can be approximate by

C

f (xi ) ∑
0<|xi−xj |<ϵ

e−
|x−y|2

4t −
∑

0<|xi−xj |<ϵ

e−
|xi−xj |

2

4t f (xj)


Denote

Wij = e−
|xi−xj |

2

4t , |xi − xj | < ϵ

and D is the diagonal matrix with entry Dii =
∑

j Wij

We want to find f such that

⟨(D −W )f , f ⟩

is minimized
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Laplace eigenmap

Step 1: Construct the neighbor graph

For each point, determine either

K nearest neighbors
all points in a fixed radius

each point is connected to its neghbours

edge length equal to Euclidean distance between the points

Wij = e−
|xi−xj |

2

4t
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Laplace eigenmap

Step 2: Embedding by Laplace operator’s eigenvectors

Define L = D −W

We want to minimize
min

⟨Df ,f ⟩=1
⟨Lf , f ⟩

Solve for eigenvectors {f1, f2, . . . , fm}
Map

x → (⟨f1, x⟩, ⟨f2, x⟩, . . . , ⟨fm, x⟩)
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