MATH 450: Mathematical statistics

Vu Dinh

Departments of Mathematical Sciences University of Delaware

February 11st, 2019

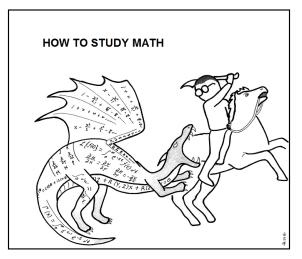
General information

- Classes: MWF 2:30pm-3:20pm, Ewing Hall 101
- Office hours: Ewing Hall 312
 - Tuesday 2pm-3pm
 - Wednesday 3:30pm-4:30pm
 - By appointment
- Website: http://vucdinh.github.io/m450s19
- Textbook: *Modern mathematical statistics with applications* (Second Edition). Devore and Berk. Springer, 2012.

Evaluation

- Overall scores will be computed as follows:
 25% homework, 10% quizzes, 25% midterm, 40% final
- No letter grades will be given for homework, midterm, or final.
 Your letter grade for the course will be based on your overall score.
- The lowest homework scores and the lowest quiz score will be dropped.
- Here are the letter grades you can achieve according to your overall score.
 - ≥ 90%: At least A
 - ≥ 75%: At least B
 - ≥ 60%: At least C
 - \geq 50%: At least D

Homework



Don't just read it; fight it!

--- Paul R. Halmos

Homework

- Assignments will be posted on the website every other
 Wednesday (starting from the first week) and will be due on
 Friday of the following week, at the beginning of lecture.
- No late homework will be accepted.
- The lowest homework scores will be dropped in the calculation of your overall homework grade.

Quizzes and exams

- At the end of some chapter, there will be a short quiz during class.
- The quiz dates will be announced at least one class in advance.
- The lowest quiz score will be dropped.

There will be a (tentative) midterm on 04/12 and a final exam during exams week.

Data analysis

Open source statistical system R

http://cran.r-project.org/

Tentative schedule

(Tentative) Class schedule:

Week	Chapter	Note		
1	1			
2	6.1 – 6.2	HW1 (due 02/22)		
3	6.2 – 6.3			
4	7.1 –7.2	HW2 (due 03/08)		
5	7.3–7.4			
6	8.1–8.2	HW3 (due 03/22)		
7	8.3 – 8.5			
8		Spring break (no class)		
9	9.1 + Review + Exam	HW4 (due 04/12), Midterm exam (04/12)		
10	9.2 – 9.3			
11	10	HW5 (due 04/26)		
12	12.1 –12.2			
13	12.3 – 12.5	HW6 (due 05/10)		
14	Review			
15		Final week		

Topics

Textbook: *Modern mathematical statistics with applications* (Second Edition).

Devore and Berk. Springer, 2012.

Week 2 · · · · •	Chapter 6: Statistics and Sampling Distributions
Week 4 · · · ·	Chapter 7: Point Estimation
Week 6 · · · ·	Chapter 8: Confidence Intervals
Week 9 · · · ·	Chapter 9: Test of Hypothesis
Week 11 · · · · ·	Chapter 10: Two-sample inference
Week 12 · · · · ·	Regression

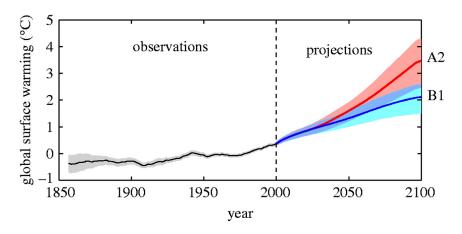
Mathematical statistics

Mathematical statistics

- Statistics is a branch of mathematics that deals with the collection, organization, analysis, interpretation and presentation of data
- "...analysis, interpretation and presentation of data"
 - → mathematical statistics
 - descriptive statistics: the part of statistics that describes data
 - inferential statistics: the part of statistics that draws conclusions from data

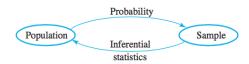
Modelling uncertainties

— Modern statistics is about making prediction in the presence of uncertainties



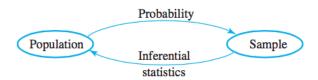
— It is difficult to make predictions, especially about the future.

Inferential statistics



- population: a well-defined collection of objects of interest
- when desired information is available for all objects in the population, we have what is called a *census*
 - \rightarrow very expensive
- a sample, a subset of the population, is selected

Random sample



Definition

The random variables $X_1, X_2, ..., X_n$ are said to form a (simple) random sample of size n if

- \bullet the X_i 's are independent random variables

Review: Probability

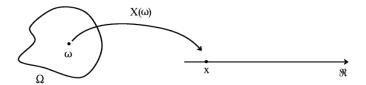
Overview

- Axioms of probability
- Conditional probability and independence
- Random variables
- Special distributions
- Bivariate and multivariate distributions

Most important parts

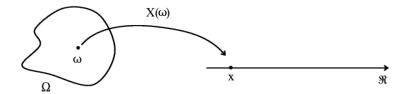
- Expectation and variance of random variables (discrete and continuous)
- Computations with normal distributions
- Bivariate and multivariate distributions

Random variables



- random variables are used to model uncertainties
- Notations:
 - random variables are denoted by uppercase letters (e.g., X);
 - the calculated/observed values of the random variables are denoted by lowercase letters (e.g., x)

Random variable



Definition

Let S be the sample space of an experiment. A real-valued function $X:S\to\mathbb{R}$ is called a random variable of the experiment.

Discrete random variable

Definition

A random variables X is discrete if the set of all possible values of X

- is finite
- is countably infinite

Note: A set A is countably infinite if its elements can be put in one-to-one correspondence with the set of natural numbers, i.e, we can index the element of A as a sequence

$$A = \{x_1, x_2, \dots, x_n, \dots\}$$

Discrete random variable

A random variable X is described by its probability mass function

Definition The probability mass function p of a random variable X whose set of possible values is $\{x_1, x_2, x_3, \ldots\}$ is a function from \mathbf{R} to \mathbf{R} that satisfies the following properties.

- (a) $p(x) = 0 \text{ if } x \notin \{x_1, x_2, x_3, \dots\}.$
- **(b)** $p(x_i) = P(X = x_i)$ and hence $p(x_i) \ge 0$ (i = 1, 2, 3, ...).
- (c) $\sum_{i=1}^{\infty} p(x_i) = 1.$

Represent the probability mass function

As a table

x	1	2	3	4	5	6	7
p(x)	.01	.03	.13	.25	.39	.17	.02

As a function:

$$p(x) = \begin{cases} \frac{1}{2} \left(\frac{2}{3}\right)^x & \text{if } x = 1, 2, 3, \dots, \\ 0 & \text{elsewhere} \end{cases}$$

Expectation

Definition The expected value of a discrete random variable X with the set of possible values A and probability mass function p(x) is defined by

$$E(X) = \sum_{x \in A} x p(x).$$

We say that E(X) exists if this sum converges absolutely.

The expected value of a random variable X is also called the **mean**, or the **mathematical expectation**, or simply the **expectation** of X. It is also occasionally denoted by E[X], E(X), E(X),

Exercise

Problem

A random variable X has the following pmf table

What is the expected value of X?

Law of the unconscious statistician (LOTUS)

Theorem 4.2 Let X be a discrete random variable with set of possible values A and probability mass function p(x), and let g be a real-valued function. Then g(X) is a random variable with

$$E[g(X)] = \sum_{x \in A} g(x)p(x).$$

Exercise

Problem

A random variable X has the following pmf table

- What is $E[X^2 X]$?
- Compute Var[X]

$$Var[X] = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

Continuous random variable

Definition

Let X be a random variable. Suppose that there exists a nonnegative real-valued function $f: \mathbb{R} \to [0, \infty)$ such that for any subset of real numbers A, we have

$$P(X \in A) = \int_A f(x) dx$$

Then X is called **absolutely continuous** or, for simplicity, **continuous**. The function f is called the **probability density function**, or simply the **density function** of X.

Whenever we say that X is continuous, we mean that it is absolutely continuous and hence satisfies the equation above.

Properties

Let X be a continuous r.v. with density function f, then

- For any fixed constant a, b,

$$P(a \le X \le b) = \int_a^b f(x) dx$$

$$P(X = a) = 0$$

$$P(a < X < b) = P(a \le X \le b) = P(a \le X \le b)$$

Probability density function

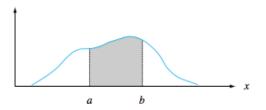


Figure 4.2 $P(a \le X \le b)$ = the area under the density curve between a and b

Expectation

Definition If X is a continuous random variable with probability density function f, the **expected value** of X is defined by

$$E(X) = \int_{-\infty}^{\infty} x f(x) \, dx.$$

The expected value of X is also called the **mean**, or **mathematical expectation**, or simply the **expectation** of X, and as in the discrete case, sometimes it is denoted by EX, E[X], μ , or μ_X .

Lotus

Theorem 6.3 Let X be a continuous random variable with probability density function f(x); then for any function $h: \mathbf{R} \to \mathbf{R}$,

$$E[h(X)] = \int_{-\infty}^{\infty} h(x) f(x) dx.$$

Example

Problem

Let X be a continuous r.v. with density function

$$f(x) = \begin{cases} ce^{-2x} & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

where c is some unknown constant.

- Compute c
- *Compite* $P(X \in [1, 2])$
- Compute E[X] and Var(X).