Mathematical statistics

February 13rd, 2019

Lecture 2: Working with normal distributions

Mathematical statistics

- Continuous random variables
- Distribution functions
- Working with the standard normal distribution $\mathcal{N}(0,1)$
- Working with the normal distributions $\mathcal{N}(\mu,\sigma^2)$
- Linear combination of normal random variables

Reading: Sections 4.1, 4.2, 4.3

Continuous random variables

Mathematical statistics

æ

- ● ● ●

Definition

Let X be a random variable. Suppose that there exists a nonnegative real-valued function $f : \mathbb{R} \to [0, \infty)$ such that for any subset of real numbers A, we have

$$P(X \in A) = \int_A f(x) dx$$

Then X is called **absolutely continuous** or, for simplicity, **continuous**. The function f is called the **probability density function**, or simply the **density function** of X.

Whenever we say that X is continuous, we mean that it is absolutely continuous and hence satisfies the equation above.

Properties

Let X be a continuous r.v. with density function f, then

- $f(x) \ge 0$ for all $x \in \mathbb{R}$
- $\int_{-\infty}^{\infty} f(x) dx = 1$

• For any fixed constant a, b,

$$P(a \le X \le b) = \int_a^b f(x) \ dx$$

Figure 4.2 $P(a \le X \le b)$ = the area under the density curve between a and b

Mathematical statistics

Definition If X is a continuous random variable with probability density function f, the **expected value** of X is defined by

$$E(X) = \int_{-\infty}^{\infty} x f(x) \, dx.$$

The expected value of X is also called the **mean**, or **mathematical expectation**, or simply the **expectation** of X, and as in the discrete case, sometimes it is denoted by EX, E[X], μ , or μ_X .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem 6.3 Let X be a continuous random variable with probability density function f(x); then for any function $h : \mathbf{R} \to \mathbf{R}$,

$$E[h(X)] = \int_{-\infty}^{\infty} h(x) f(x) \, dx.$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

э

Let X be a continuous r.v. with density function

$$f(x) = egin{cases} 2x & \textit{if } x \in [0,1] \ 0 & \textit{otherwise} \end{cases}$$

where c is some unknown constant.

- Compute $P(X \in [0.25, 0.75])$
- Compute E[X] and Var(X).

Definition

If X is a random variable, then the function F defined on $(-\infty,\infty)$ by

$$F(t)=P(X\leq t)$$

is called the distribution function of X.

Figure 4.2 $P(a \le X \le b)$ = the area under the density curve between *a* and *b*

Mathematical statistics

Distribution function

For continuous random variable:

$$F(t) = P(X \le t) = \int_{(-\infty,t]} f(x) dx$$
$$= \int_{-\infty}^{t} f(x) dx$$

Figure 4.5 A pdf and associated cdf

Distribution function

For continuous random variable:

$$P(a \le X \le b) = \int_a^b f(x) \, dx = F(b) - F(a)$$

Figure 4.2 $P(a \le X \le b)$ = the area under the density curve between *a* and *b*

Moreover:

$$f(x)=F'(x)$$

The distribution function for the duration of a certain soap opera (in tens of hours) is

$$F(y) = egin{cases} 1 - rac{16}{y^2} & ext{if } y \geq 4 \ 0 & ext{elsewhere} \end{cases}$$

Find $P[4 \leq Y \leq 8]$.

Normal random variables

Reading: 4.3

Mathematical statistics

 $\mathcal{N}(\mu, \sigma^2)$

 $E(X) = \mu$, $Var(X) = \sigma^2$

▲御▶ ▲理▶ ▲理▶

 $\mathcal{N}(\mu, \sigma^2)$

•
$$E(X) = \mu$$
, $Var(X) = \sigma^2$

• Density function

$$f(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

<ロ> <同> <同> < 同> < 同>

• If Z is a normal random variable with parameters $\mu = 0$ and $\sigma = 1$, then the pdf of Z is

$$f(z)=\frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$$

and Z is called the standard normal distribution • E(Z) = 0, Var(Z) = 1 $\Phi(z)$

$$\Phi(z) = P(Z \le z) = \int_{-\infty}^{2} f(y) \, dy$$

- ● ● ●

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9278	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767

Table A.3 Standard Normal Curve Areas (cont.)

 $\Phi(z) = P(Z \le z)$

Let Z be a standard normal random variable. Compute

- *P*[*Z* ≤ 0.75]
- *P*[*Z* ≥ 0.82]
- $P[1 \le Z \le 1.96]$
- *P*[*Z* ≤ −0.82]

Note: The density function of Z is symmetric around 0.

Let Z be a standard normal random variable. Find a, b such that

$$P[Z \le a] = 0.95$$

and

$$P[-b \le Z \le b] = 0.95$$

- ● ● ●

э

 $\mathcal{N}(\mu, \sigma^2)$

•
$$E(X) = \mu$$
, $Var(X) = \sigma^2$

• Density function

$$f(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

<ロ> <同> <同> < 同> < 同>

Let X be a normal random variable with mean μ and standard deviation σ .

Then

$$Z = \frac{X - \mu}{\sigma}$$

follows the standard normal distribution.

Shifting and scaling normal random variables

If X has a normal distribution with mean μ and standard deviation σ , then

$$Z = \frac{X - \mu}{\sigma}$$

has a standard normal distribution. Thus

$$P(a \le X \le b) = P\left(\frac{a-\mu}{\sigma} \le Z \le \frac{b-\mu}{\sigma}\right)$$
$$= \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$$
$$P(X \le a) = \Phi\left(\frac{a-\mu}{\sigma}\right) \quad P(X \ge b) = 1 - \Phi\left(\frac{b-\mu}{\sigma}\right)$$

@▶ ◀ ▣▶ ◀

Let X be a $\mathcal{N}(3,9)$ random variable. Compute $P[X \leq 5.25]$.

Mathematical statistics

・日・ ・ ヨ・ ・