Mathematical statistics

February $18^{\text {th }}, 2019$

Lecture 4: Statistics and sampling distribution

Week 1	Probability reviews
	Chapter 6: Statistics and Sampling Distributions
Week 4	Chapter 7: Point Estimation
Week 7	Chapter 8: Confidence Intervals
Week 10	Chapter 9: Test of Hypothesis
Week 14	Regression

Descriptive statistics

Pictorial methods

1.3: Measures of locations

- The Mean
- The Median
- Trimmed Means

Measures of locations: mean

The sample mean \bar{x} of observations $x_{1}, x_{2}, \ldots, x_{n}$ is given by

$$
\bar{x}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

Measures of locations: median

Step 1: ordering the observations from smallest to largest

$$
\tilde{x}=\left\{\begin{array}{l}
\begin{array}{l}
\text { The single } \\
\text { middle } \\
\text { value if } n \\
\text { is odd }
\end{array} \quad=\left(\frac{n+1}{2}\right)^{\text {th }} \text { ordered value } \\
\begin{array}{l}
\text { The average } \\
\text { of the two } \\
\text { middle } \\
\text { values if } n \\
\text { is even }
\end{array} \quad=\text { average of }\left(\frac{n}{2}\right)^{\text {th }} \text { and }\left(\frac{n}{2}+1\right)^{\text {th }} \text { ordered values }
\end{array}\right.
$$

Median is not affected by outliers

Measures of locations: trimmed mean

- A $\alpha \%$ trimmed mean is computed by:
- eliminating the smallest $\alpha \%$ and the largest $\alpha \%$ of the sample
- averaging what remains
- $\alpha=0 \rightarrow$ the mean
- $\alpha \approx 50 \rightarrow$ the median

Measures of variability: deviations from the mean

The sample variance, denoted by s^{2}, is given by

$$
s^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}=\frac{S_{x x}}{n-1}
$$

The sample standard deviation, denoted by s, is the (positive) square root of the variance:

$$
s=\sqrt{s^{2}}
$$

Measures of variability: deviations from the mean

The sample variance, denoted by s^{2}, is given by

$$
s^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}=\frac{S_{x x}}{n-1}
$$

The sample standard deviation, denoted by s, is the (positive) square root of the variance:

$$
s=\sqrt{s^{2}}
$$

- Why squared? Because it is easier to do math with x^{2} than $|x|$
- Why $(n-1)$? Because that makes s^{2} an unbiased estimator of the population variance (Chapter 7)

Computing formula for s^{2}

$$
S_{x x}=\sum\left(x_{i}-\bar{x}\right)^{2}=\sum x_{i}^{2}-\frac{\left(\sum x_{i}\right)^{2}}{n}
$$

Proof Because $\bar{x}=\sum x_{i} / n, n \bar{x}^{2}=\left(\sum x_{i}\right)^{2} / n$. Then,

$$
\begin{aligned}
\sum\left(x_{i}-\bar{x}\right)^{2} & =\sum\left(x_{i}^{2}-2 \bar{x} \cdot x_{i}+\bar{x}^{2}\right)=\sum x_{i}^{2}-2 \bar{x} \sum x_{i}+\sum(\bar{x})^{2} \\
& =\sum x_{i}^{2}-2 \bar{x} \cdot n \bar{x}+n(\bar{x})^{2}=\sum x_{i}^{2}-n(\bar{x})^{2}
\end{aligned}
$$

Properties of the sample standard deviation

Let $x_{1}, x_{2}, \ldots, x_{n}$ be a sample and c be a constant.

1. If $y_{1}=x_{1}+c, y_{2}=x_{2}+c, \ldots, y_{n}=x_{n}+c$, then $s_{y}^{2}=s_{x}^{2}$, and
2. If $y_{1}=c x_{1}, \ldots, y_{n}=c x_{n}$, then $s_{y}^{2}=c^{2} s_{x}^{2}, s_{y}=|c| s_{x}$,
where s_{x}^{2} is the sample variance of the $x^{\prime} s$ and s_{y}^{2} is the sample variance of the y 's.

Boxplots

Order the n observations from smallest to largest and separate the smallest half from the largest half; the median \tilde{x} is included in both halves if n is odd. Then the lower fourth is the median of the smallest half and the upper fourth is the median of the largest half. A measure of spread that is resistant to outliers is the fourth spread f_{s}, given by

$$
f_{s}=\text { upper fourth }- \text { lower fourth }
$$

Boxplots

```
40}52525560707585859090 92 94 94 95 98 100 115 125 125
```

The five-number summary is as follows:

$$
\begin{aligned}
& \text { smallest } x_{i}=40 \\
& \text { largest } x_{i}=125
\end{aligned}
$$

Figure 1.17 A boxplot of the corrosion data

Boxplot with outliers

Any observation farther than $1.5 f_{s}$ from the closest fourth is an outlier. An outlier is extreme if it is more than $3 f_{s}$ from the nearest fourth, and it is mild otherwise.

Overview

6.1 Statistics and their distributions
6.2 The distribution of the sample mean
6.3 The distribution of a linear combination

Order $6.1 \rightarrow 6.3 \rightarrow 6.2$

Random sample

Definition

The random variables $X_{1}, X_{2}, \ldots, X_{n}$ are said to form a (simple) random sample of size n if
(1) the X_{i} 's are independent random variables
(2) every X_{i} has the same probability distribution

Recap: Independent random variables

Definition

Two random variables X and Y are said to be independent if for every pair of x and y values,
$P(X=x, Y=y)=P_{X}(x) \cdot P_{Y}(y) \quad$ if the variables are discrete
or

$$
f(x, y)=f_{X}(x) \cdot f_{Y}(y) \quad \text { if the variables are continuous }
$$

Property
If X and Y are independent, then for any functions g and h

$$
E[g(X) \cdot h(Y)]=E[g(X)] \cdot E[h(Y)]
$$

Definition

A statistic is any quantity whose value can be calculated from sample data

- prior to obtaining data, there is uncertainty as to what value of any particular statistic will result \rightarrow a statistic is a random variable
- the probability distribution of a statistic is referred to as its sampling distribution

Random variables

- random variables are used to model uncertainties
- Notations:
- random variables are denoted by uppercase letters (e.g., X);
- the calculated/observed values of the random variables are denoted by lowercase letters (e.g., x)

Example of a statistic

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of size n
- The sample mean of $X_{1}, X_{2}, \ldots, X_{n}$, defined by

$$
\bar{X}=\frac{X_{1}+X_{2}+\ldots X_{n}}{n}
$$

is a statistic

- When the values of $x_{1}, x_{2}, \ldots, x_{n}$ are collected,

$$
\bar{x}=\frac{x_{1}+x_{2}+\ldots x_{n}}{n}
$$

is a realization of the statistic \bar{X}

Example of a statistic

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of size n
- The random variable

$$
T=X_{1}+2 X_{2}+3 X_{5}
$$

is a statistic

- When the values of $x_{1}, x_{2}, \ldots, x_{n}$ are collected,

$$
t=x_{1}+2 x_{2}+3 x_{5},
$$

is a realization of the statistic T

Questions for this chapter

Given statistic T computed from sample $X_{1}, X_{2}, \ldots, X_{n}$

- Question 1: If we know the distribution of X_{i} 's, can we obtain the distribution of T ?
- Question 2: If we don't know the distribution of X_{i} 's, can we still obtain/approximate the distribution of T ?

Questions for this chapter

Real questions: If T is a linear combination of X_{i} 's, can we

- compute the distribution of T in some easy cases?
- compute the expected value and variance of T ?

Questions for this section

Real questions: If $T=X_{1}+X_{2}$

- compute the distribution of T in some easy cases
- compute the expected value and variance of T

Example 1

Problem

Consider the distribution P

x	10	15	20
$p(x)$	0.2	0.3	0.5

Let $\left\{X_{1}, X_{2}\right\}$ be a random sample of size 2 from P, and $T=X_{1}+X_{2}$.
(1) Compute $P[T=40]$

Example 1

Problem

Consider the distribution P

x	10	15	20
$p(x)$	0.2	0.3	0.5

Let $\left\{X_{1}, X_{2}\right\}$ be a random sample of size 2 from P, and $T=X_{1}+X_{2}$.
(1) Compute $P[T=40]$
(2) Derive the probability mass function of T

Example 1

Problem

Consider the distribution P

x	10	15	20
$p(x)$	0.2	0.3	0.5

Let $\left\{X_{1}, X_{2}\right\}$ be a random sample of size 2 from P, and $T=X_{1}+X_{2}$.
(1) Compute $P[T=100]$
(2) Derive the probability mass function of T
(3) Compute the expected value and the standard deviation of T

