Mathematical statistics

February $25^{\text {th }}, 2018$
Lecture 6: Statistics and sampling distribution (cont.)

Week 1	Probability reviews
	Chapter 6: Statistics and Sampling Distributions
Week 4	Chapter 7: Point Estimation
Week 7	Chapter 8: Confidence Intervals
Week 10	Chapter 9: Test of Hypothesis
Week 14	Regression

Overview

6.1 Statistics and their distributions
6.2 The distribution of the sample mean
6.3 The distribution of a linear combination

Order $6.1 \rightarrow 6.3 \rightarrow 6.2$

Random sample

Definition

The random variables $X_{1}, X_{2}, \ldots, X_{n}$ are said to form a (simple) random sample of size n if
(1) the X_{i} 's are independent random variables
(2) every X_{i} has the same probability distribution

Questions for this chapter

Given a random sample $X_{1}, X_{2}, \ldots, X_{n}$, and

$$
T=a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{n} X_{n}
$$

- If we know the distribution of X_{i} 's, can we obtain the distribution of T ?
- If we don't know the distribution of X_{i} 's, can we still obtain/approximate the distribution of T ?

6.1: Summary

(1) If the distribution and the statistic T is simple, try to construct the pmf of the statistic (as in Example 1)
(2) If the probability density function $f_{X}(x)$ of X 's is known, the

- try to represent/compute the cumulative distribution (cdf) of T

$$
\mathbb{P}[T \leq t]
$$

- take the derivative of the function (with respect to t)

6.2: Linear combination of normal random variables

Theorem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent normal random variables (with possibly different means and/or variances). Then

$$
T=a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{n} X_{n}
$$

also follows the normal distribution.
What are the mean and the standard deviation of T ?

- $E(T)=a_{1} E\left(X_{1}\right)+a_{2} E\left(X_{2}\right)+\ldots+a_{n} E\left(X_{n}\right)$
- $\sigma_{T}^{2}=a_{1}^{2} \sigma_{X_{1}}^{2}+a_{2}^{2} \sigma_{X_{2}}^{2}+\ldots+a_{n}^{2} \sigma_{X_{n}}^{2}$

Moment generating function

Definition

The moment generating function (mgf) of a continuous random variable X is

$$
M_{X}(t)=E\left(e^{t X}\right)=\int_{-\infty}^{\infty} e^{t x} f_{X}(x) d x
$$

Reading: 3.4 and 4.2

Moment generating function

Property

Two distributions have the same pdf if and only if they have the same moment generating function

Moment generating function

Distribution	Moment-generating function $M_{X}(t)$
Bernoulli $P(X=1)=p$	$1-p+p e^{t}$
Geometric $(1-p)^{k-1} p$	$\begin{gathered} \frac{p e^{t}}{1-(1-p) e^{t}} \\ \forall t<-\ln (1-p) \end{gathered}$
Binomial $\mathrm{B}(n, p)$	$\left(1-p+p e^{t}\right)^{n}$
Poisson Pois (λ)	$e^{\lambda\left(e^{t}-1\right)}$
Uniform (continuous) $\mathrm{U}(\mathrm{a}, \mathrm{b})$	$\frac{e^{t b}-e^{t a}}{t(b-a)}$
Uniform (discrete) $\mathrm{U}(\mathrm{a}, \mathrm{b})$	$\frac{e^{a t}-e^{(b+1) t}}{(b-a+1)\left(1-e^{t}\right)}$
Normal $\boldsymbol{N}\left(\mu, \sigma^{2}\right)$	$e^{t \mu+\frac{1}{2} \sigma^{2} t^{2}}$
Chi-squared χ_{k}^{2}	$(1-2 t)^{-\frac{k}{2}}$
Gamma $\Gamma(k, \theta)$	$(1-t \theta)^{-k} ; \forall t<\frac{1}{\theta}$
Exponential $\operatorname{Exp}(\lambda)$	$\left(1-t \lambda^{-1}\right)^{-1},(t<\lambda)$

[^0]
Moment generating function

Definition

Let X_{1}, X_{2} be a 2 independent random variables and $T=X_{1}+X_{2}$, then

$$
M_{T}(t)=M_{X_{1}}(t) M_{X_{2}}(t)
$$

Hint:

$$
M_{T}(t)=E\left(e^{t T}\right)=E\left(e^{t\left(X_{1}+X_{2}\right)}\right)=E\left(e^{t X_{1}} \cdot e^{t X_{2}}\right)
$$

Example 3

Problem

Given that the mgf of a Poisson variables with mean λ is

$$
e^{\lambda\left(e^{t}-1\right)}
$$

Suppose X and Y are independent Poisson random variables, where X has mean a and Y has mean b. Show that $T=X+Y$ also follows the Poisson distribution.

Example 4

Problem

Given that the mgf of a normal random variables with mean μ and variance σ^{2} is

$$
e^{\mu t+\frac{\sigma^{2}}{2} t^{2}}
$$

Suppose X and Y are independent normal random variables. Show that $T=X+Y$ also follows the normal distribution.

Shaded area $=\Phi(z)$

Table A. 3 Standard Normal Curve Areas (cont.) $\quad \Phi(z)=P(Z \leq z)$

\boldsymbol{z}	$\mathbf{. 0 0}$	$\mathbf{. 0 1}$	$\mathbf{. 0 2}$	$\mathbf{. 0 3}$	$\mathbf{. 0 4}$	$\mathbf{. 0 5}$	$\mathbf{. 0 6}$	$\mathbf{. 0 7}$	$\mathbf{. 0 8}$	$\mathbf{. 0 9}$
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9278	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767

Example 1

Problem

Let $X_{1}, X_{2}, \ldots, X_{16}$ be a random sample from $\mathcal{N}(1,4)$ (that is, normal distribution with mean $\mu=1$ and standard deviation $\sigma=2$).
Let \bar{X} be the sample mean

$$
\bar{X}=\frac{X_{1}+X_{2}+\ldots+X_{16}}{16}
$$

- What is the distribution of \bar{X} ?
- Compute $P[\bar{X} \leq 1.82]$

Example 1*

Problem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from $\mathcal{N}\left(\mu, \sigma^{2}\right)$ (that is, normal distribution with mean μ and standard deviation σ). Let \bar{X} be the sample mean

$$
\bar{X}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}
$$

What is the distribution of \bar{X} ?

[^0]: Mathematical statistics

