Mathematical statistics

February 27^{th} , 2018

Lecture 7: The distribution of the sample mean

Topics

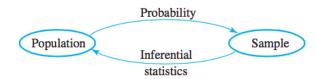
Week 1 · · · · ·	Probability reviews
Week 2 ·····	Chapter 6: Statistics and Sampling Distributions
Week 4 · · · · ·	Chapter 7: Point Estimation
Week 7 · · · ·	Chapter 8: Confidence Intervals
Week 10 · · · ·	Chapter 9: Test of Hypothesis
Week 14 ·····	Regression

Overview

- 6.1 Statistics and their distributions
- 6.2 The distribution of the sample mean
- 6.3 The distribution of a linear combination

Order $6.1 \rightarrow 6.3 \rightarrow 6.2$

Random sample



Definition

The random variables $X_1, X_2, ..., X_n$ are said to form a (simple) random sample of size n if

- the X_i 's are independent random variables

Questions for this chapter

Given a random sample X_1, X_2, \ldots, X_n , and

$$T = a_1 X_1 + a_2 X_2 + \ldots + a_n X_n$$

- If we know the distribution of X_i's, can we obtain the distribution of T?
 - Simple cases
 - If $X_i's$ follow normal distribution, then so does T.
- If we **don't know** the distribution of X_i 's, can we still obtain/approximate the distribution of T?
 - Can we at least compute the mean and the variance?
 - When T is the sample mean, i.e. $a_1 = a_2 = \ldots = \frac{1}{n}$

6.3: Linear combination of normal random variables

$\mathsf{Theorem}$

Let $X_1, X_2, ..., X_n$ be independent normal random variables (with possibly different means and/or variances). Then

$$T = a_1 X_1 + a_2 X_2 + \ldots + a_n X_n$$

also follows the normal distribution.

What are the mean and the standard deviation of T?

- $E(T) = a_1 E(X_1) + a_2 E(X_2) + \ldots + a_n E(X_n)$
- $\sigma_T^2 = a_1^2 \sigma_{X_1}^2 + a_2^2 \sigma_{X_2}^2 + \ldots + a_n^2 \sigma_{X_n}^2$

Example 1*

Problem

Let $X_1, X_2, ..., X_n$ be a random sample from $\mathcal{N}(\mu, \sigma^2)$ (that is, normal distribution with mean μ and standard deviation σ). Let \bar{X} be the sample mean

$$\bar{X} = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

What is the distribution of \bar{X} ?

What if X_i 's are not normal distributions?

Given a random sample X_1, X_2, \ldots, X_n , and

$$T = a_1X_1 + a_2X_2 + \ldots + a_nX_n$$

If we don't know the distribution of X_i 's, can we obtain the distribution of T?

Linear combination of random variables

Theorem

Let $X_1, X_2, ..., X_n$ be independent random variables (with possibly different means and/or variances). Define

$$T = a_1 X_1 + a_2 X_2 + \ldots + a_n X_n,$$

then the mean and the standard deviation of T can be computed by

•
$$E(T) = a_1 E(X_1) + a_2 E(X_2) + \ldots + a_n E(X_n)$$

$$\bullet \ \sigma_T^2 = a_1^2 \sigma_{X_1}^2 + a_2^2 \sigma_{X_2}^2 + \ldots + a_n^2 \sigma_{X_n}^2$$

Example

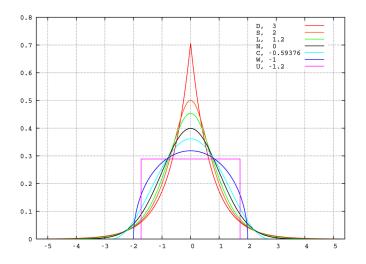
Problem

A gas station sells three grades of gasoline: regular unleaded, extra unleaded, and super unleaded. These are priced at 2.20, 2.35, and 2.50 per gallon, respectively.

Let X_1 , X_2 , and X_3 denote the amounts of these grades purchased (gallons) on a particular day. Suppose the X_i 's are independent with $\mu_1=1000$, $\mu_2=500$, $\mu_3=300$, $\sigma_1=100$, $\sigma_2=80$, $\sigma_3=50$. Compute the expected value and the standard deviation of the revenue from sales

$$Y = 2.2X_1 + 2.35X_2 + 2.5X_3$$
.

Bad news



In general, the mean and the variance do not define a probability distribution.

Mean and variance of the sample mean

Problem

Given a random sample $X_1, X_2, ..., X_n$ from a distribution with mean μ and standard deviation σ , the mean is modeled by a random variable \bar{X} ,

$$\bar{X} = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

- Compute $E(\bar{X})$
- Compute $Var(\bar{X})$

Mean and variance of the sample mean

Let $X_1, X_2, ..., X_n$ be a random sample from a distribution with mean value μ and standard deviation σ . Then

1.
$$E(\overline{X}) = \mu_{\overline{X}} = \mu$$

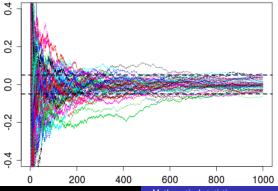
2.
$$V(\overline{X}) = \sigma_{\overline{X}}^2 = \sigma^2/n$$
 and $\sigma_{\overline{X}} = \sigma/\sqrt{n}$

Law of large numbers

THEOREM

If X_1, X_2, \ldots, X_n is a random sample from a distribution with mean μ and variance σ^2 , then \overline{X} converges to μ

- **a.** In mean square $E[(\overline{X} \mu)^2] \to 0$ as $n \to \infty$
- **b.** In probability $P(|\overline{X} \mu| \ge \varepsilon) \to 0 \text{ as } n \to \infty$



The Central Limit Theorem

Theorem

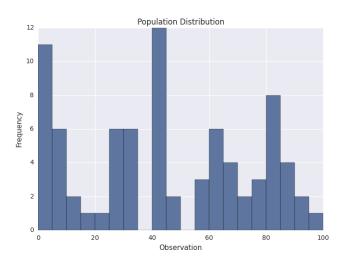
Let X_1, X_2, \ldots, X_n be a random sample from a distribution with mean μ and variance σ^2 . Then, in the limit when $n \to \infty$, the standardized version of \bar{X} have the standard normal distribution

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\leq z\right)=\mathbb{P}[Z\leq z]=\Phi(z)$$

Rule of Thumb:

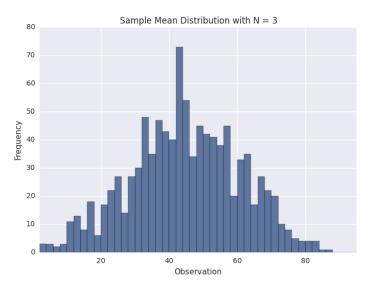
If n > 30, the Central Limit Theorem can be used for computation.

Example: population distribution

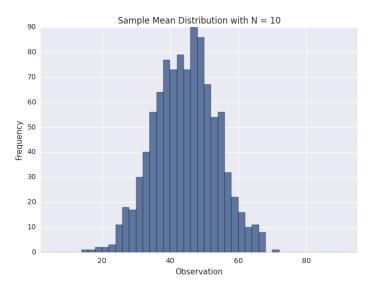


Matt Nedrick (2015). http://github.com/mattnedrich/CentralLimitTheoremDemo

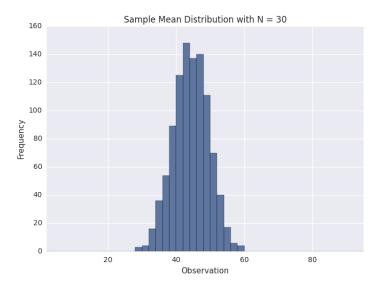
Sample distribution: n = 3



Sample distribution: n = 10



Sample distribution: n = 30



Example

Problem

When a batch of a certain chemical product is prepared, the amount of a particular impurity in the batch is a random variable with mean value 4.0 g and standard deviation 1.5 g.

If 50 batches are independently prepared, what is the (approximate) probability that the sample average amount of impurity X is between 3.5 and 3.8 g?

Hint:

- \bullet First, compute $\mu_{\bar{X}}$ and $\sigma_{\bar{X}}$
- Note that

$$\frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}}$$

is (approximately) standard normal.

Example

Problem

The tip percentage at a restaurant has a mean value of 18% and a standard deviation of 6%.

What is the approximate probability that the sample mean tip percentage for a random sample of 40 bills is between 16% and 19%?