Mathematical statistics

March $1^{\text {st }}, 2018$
Lecture 8: The distribution of the sample mean

Chapter 6: Statistics and Sampling Distributions

6.1 Statistics and their distributions
6.2 The distribution of the sample mean
6.3 The distribution of a linear combination

Order $6.1 \rightarrow 6.3 \rightarrow 6.2$
Next class (Monday, 03/04): QUIZ 1
Next Friday (03/08): Homework 2 due

Questions for this chapter

Given a random sample $X_{1}, X_{2}, \ldots, X_{n}$, and

$$
T=a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{n} X_{n}
$$

- If we know the distribution of X_{i} 's, can we obtain the distribution of T ?
- Simple cases
- If $X_{i}^{\prime} s$ follow normal distribution, then so does T.
- If we don't know the distribution of X_{i} 's, can we still obtain/approximate the distribution of T ?
- Can we at least compute the mean and the variance?
- When T is the sample mean, i.e. $a_{1}=a_{2}=\ldots=\frac{1}{n}$

Linear combination of random variables

Theorem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables (with possibly different means and/or variances). Define

$$
T=a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{n} X_{n}
$$

then the mean and the standard deviation of T can be computed by

- $E(T)=a_{1} E\left(X_{1}\right)+a_{2} E\left(X_{2}\right)+\ldots+a_{n} E\left(X_{n}\right)$
- $\sigma_{T}^{2}=a_{1}^{2} \sigma_{X_{1}}^{2}+a_{2}^{2} \sigma_{X_{2}}^{2}+\ldots+a_{n}^{2} \sigma_{X_{n}}^{2}$

Bad news

In general, the mean and the variance do not define a probability distribution.

Mean and variance of the sample mean

Problem

Given a random sample $X_{1}, X_{2}, \ldots, X_{n}$ from a distribution with mean μ and standard deviation σ, the mean is modeled by a random variable \bar{X},

$$
\bar{X}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}
$$

- Compute $E(\bar{X})$
- Compute $\operatorname{Var}(\bar{X})$

Mean and variance of the sample mean

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with mean value μ and standard deviation σ. Then

1. $E(\bar{X})=\mu_{\bar{X}}=\mu$
2. $V(\bar{X})=\sigma_{\bar{X}}^{2}=\sigma^{2} / n$ and $\sigma_{\bar{X}}=\sigma / \sqrt{n}$

Theorem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with mean μ and variance σ^{2}. Then, in the limit when $n \rightarrow \infty$, the standardized version of \bar{X} have the standard normal distribution

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq z\right)=\mathbb{P}[Z \leq z]=\Phi(z)
$$

Rule of Thumb:
If $n>30$, the Central Limit Theorem can be used for computation.

Example

Problem

When a batch of a certain chemical product is prepared, the amount of a particular impurity in the batch is a random variable with mean value 4.0 g and standard deviation 1.5 g .

If 50 batches are independently prepared, what is the (approximate) probability that the sample average amount of impurity X is between 3.5 and 3.8 g ?

Hint:

- First, compute $\mu_{\bar{X}}$ and $\sigma_{\bar{X}}$
- Note that

$$
\frac{\bar{X}-\mu_{\bar{X}}}{\sigma_{\bar{X}}}
$$

is (approximately) standard normal.

Example

Problem

The tip percentage at a restaurant has a mean value of 18% and a standard deviation of 6\%.

What is the approximate probability that the sample mean tip percentage for a random sample of 40 bills is between 16% and 19\%?

Example

Problem

The weight of a certain crab is known to have an expected value of 1.4 kg and standard deviation of 0.4 kg . The distribution is unknown. Consider one net that contains 112 crabs.

What is the probability that the total weight of the crabs in the net is less than 150 kg ?

