Mathematical statistics

March $4^{\text {th }}, 2018$

Lecture 9: Introduction to parameter estimation

Week 1	Probability reviews
Week 2	Chapter 6: Statistics and Sampling Distributions
Week 4	Chapter 7: Point Estimation
Week 7	Chapter 8: Confidence Intervals
Week 10	Chapter 9: Test of Hypothesis
Week 14	Regression

Theorem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with mean μ and variance σ^{2}. Then, in the limit when $n \rightarrow \infty$, the standardized version of \bar{X} have the standard normal distribution

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq z\right)=\mathbb{P}[Z \leq z]=\Phi(z)
$$

Rule of Thumb:
If $n>30$, the Central Limit Theorem can be used for computation.

Example

Problem

When a batch of a certain chemical product is prepared, the amount of a particular impurity in the batch is a random variable with mean value 4.0 g and standard deviation 1.5 g .

If 50 batches are independently prepared, what is the (approximate) probability that the sample average amount of impurity X is between 3.5 and 3.8 g ?

Hint:

- First, compute $\mu_{\bar{X}}$ and $\sigma_{\bar{X}}$
- Note that

$$
\frac{\bar{X}-\mu_{\bar{X}}}{\sigma_{\bar{X}}}
$$

is (approximately) standard normal.

Example

Problem

The tip percentage at a restaurant has a mean value of 18% and a standard deviation of 6\%.

What is the approximate probability that the sample mean tip percentage for a random sample of 40 bills is between 16% and 19\%?

Chapter 7: Overview

7.1 Point estimate

- unbiased estimator
- mean squared error
7.2 Methods of point estimation
- method of moments
- method of maximum likelihood.
7.3 Sufficient statistic
7.4 Information and Efficiency
- Large sample properties of the maximum likelihood estimator
- Bootstrap

Mathematical modelling

- In a mathematical model, parameters are used to define a whole family of functions that relate the inputs and the outputs
- Example:

$$
y=a x+b
$$

represents a family of linear functions parameterized by (a, b)

- Parameter estimation: from collected data, determine the values of the parameter

Deterministic modelling vs. Stochastic modelling

$y=$ Product sales

Mathematical model:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, \quad \epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Question of this chapter

- Given a random sample X_{1}, \ldots, X_{n} from a distribution with pmf/pdf $f(x, \theta)$ parameterized by a parameter θ
- Goal: Estimate θ

Example 1

- Setting: I'm running for president of the US
- I want to estimate how many people support me

- Denote
- A: the total number of people who will vote for me
- B: the total number of people who will not

$$
p=\frac{A}{A+B}
$$

is an unknown quantity that I'm interested in

Step 1: Random sample

- Choose one random person.
- Record the response by a random variable X
- Yes $\rightarrow X=1$
- No $\rightarrow X=0$
- The pmf of X is as follows

x	0	1
$p(x)$	$1-p$	p

- Repeat 2000 times \rightarrow a sample $X_{1}, X_{2}, \ldots, X_{2000}$
- Obtained data: $x_{1}=1, x_{2}=0, \ldots, x_{2000}=1$
- Summary statistics: $n_{y e s}=1200, n_{n o}=800$
- Question: What is a good estimate of p ?

Step 2: Analysis

- A good estimate of p is

$$
\hat{p}=\frac{n_{\text {yes }}}{n}=\frac{1200}{2000}=0.6
$$

Step 2: Analysis

- A good estimate of p is

$$
\hat{p}=\frac{n_{\text {yes }}}{n}=\frac{1200}{2000}=0.6
$$

- A more proper way to write \hat{p}

$$
\hat{p}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}=\bar{X}
$$

- The strong law of large number

$$
\hat{p}=\bar{X} \approx E[X]
$$

and

$$
E[X]=p .1+(1-p) .0=p
$$

Step 2: Analysis

Central Limit Theorem: $(n>40)$

$$
P\left[-1.96 \leq \frac{\hat{p}-E[X]}{\sigma_{X} / \sqrt{n}} \leq 1.96\right]=95 \%
$$

or

$$
P\left[p-1.96 \frac{1}{\sqrt{n}} \sqrt{p(1-p)} \leq \hat{p} \leq p-1.96 \frac{1}{\sqrt{n}} \sqrt{p(1-p)}\right]=95 \%
$$

Step 2: Analysis

- Simplified expression:

$$
P\left[\hat{p}-1.96 \frac{\hat{p}(1-\hat{p})}{\sqrt{n}} \leq p \leq \hat{p}+1.96 \frac{\hat{p}(1-\hat{p})}{\sqrt{n}}\right]=95 \%
$$

- Plug $\hat{p}=0.6$ in, we can say

$$
0.579 \leq p \leq 0.621
$$

with 95% confidence

