Mathematical statistics

March 8th, 2018

Lecture 11: Method of moments

Mathematical statistics

Week 1 · · · · ·	Probability reviews
Week 2 · · · · ·	Chapter 6: Statistics and Sampling Distributions
Week 4 · · · · ·	Chapter 7: Point Estimation
Week 7 · · · · ·	Chapter 8: Confidence Intervals
Week 10 · · · · ·	Chapter 9: Test of Hypothesis
Week 14 · · · · ·	Regression

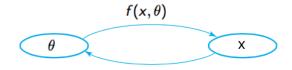
æ

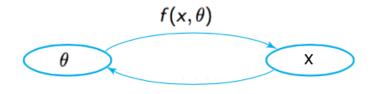
▶ ★@ ▶ ★ 臣 ▶ ★ 臣 ▶

Overview

- 7.1 Point estimate
 - unbiased estimator
 - mean squared error
- 7.2 Methods of point estimation
 - method of moments
 - method of maximum likelihood.
- 7.3 Sufficient statistic
- 7.4 Information and Efficiency
 - Large sample properties of the maximum likelihood estimator
 - Bootstrap

- Given a random sample X_1, \ldots, X_n from a distribution with pmf/pdf $f(x, \theta)$ parameterized by a parameter θ
- Goal: Estimate θ





Definition

A point estimate $\hat{\theta}$ of a parameter θ is a single number that can be regarded as a sensible value for θ .

 $\begin{array}{ccc} \text{population parameter} \Longrightarrow & \textit{sample} & \Longrightarrow \textit{estimate} \\ \\ \theta & \Longrightarrow X_1, X_2, \dots, X_n \Longrightarrow & \hat{\theta} \end{array}$

- **→** → **→**

Problem

Let X_1, \ldots, X_{10} be a random sample from the exponential distribution with parameter λ , that is

$$f(x;\lambda) = \lambda e^{-\lambda x}, \quad x \ge 0$$

The observed data are

3.11, 0.64, 2.55, 2.20, 5.44,

3.42, 1.39, 8.13, 1.82, 1.30

Use the method of moments to obtain an estimator of λ .

• Measuring error of estimation

$$|\hat{ heta} - heta|$$
 or $(\hat{ heta} - heta)^2$

• The error of estimation is random

Definition

The mean squared error of an estimator $\hat{\theta}$ is

$$E[(\hat{\theta} - \theta)^2]$$

Mathematical statistics

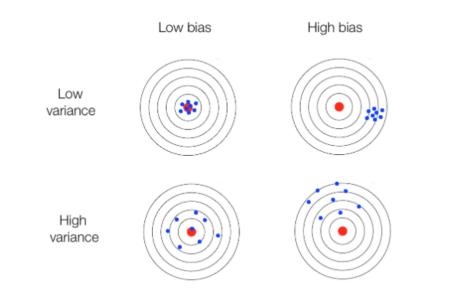
Theorem

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] = V(\hat{\theta}) + (E(\hat{\theta}) - \theta)^2$$

Bias-variance decomposition

Mean squared error = variance of estimator + $(bias)^2$

Bias-variance decomposition



Mathematical statistics

æ

- ● ● ●

Definition

A point estimator $\hat{\theta}$ is said to be an unbiased estimator of θ if

$$E(\hat{\theta}) = \theta$$

for every possible value of θ .

Unbiased estimator \Leftrightarrow Bias = 0 \Leftrightarrow Mean squared error = variance of estimator

Sample proportion

• A test is done with probability of success *p*. Denote the outcome by let *X* (success: 1, failure: 0)

$$E[X] = p, \quad Var[X] = p(1-p)$$

• *n* independent tests are done, let *X*₁, *X*₂,..., *X_n* be the outcomes

$$\hat{p} = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

We know that

$$E[\hat{p}] = p$$

thus \hat{p} is an unbiased estimator

Compute MSE(p̂)

Sample proportion

• Let

$$\hat{p} = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

$$MSE(\hat{p}) = Var(\hat{p}) + (bias)^{2}$$

$$= Var\left(\frac{X_{1} + X_{2} + \ldots + X_{n}}{n}\right)$$

$$= \frac{1}{n^{2}}\left(Var(X_{1}) + Var(X_{2}) + \ldots + Var(X_{n})\right)$$

$$= \frac{p(1-p)}{n}$$

æ

Э

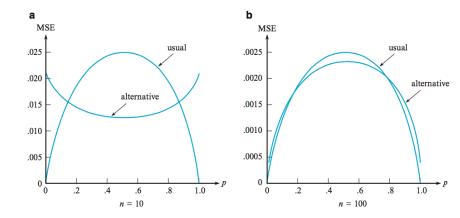
@▶ < ≣

- A test is done with probability of success p
- *n* independent tests are done, let *X*₁, *X*₂,..., *X_n* be the outcomes
- Strange idea: How about using

$$\tilde{\rho} = \frac{X_1 + X_2 + \ldots + X_n + 2}{n+4}$$

- What is the bias of p?
- Compute MSE(p̃)

Example 7.1 and 7.4



э

- ● ● ●

æ