Mathematical statistics

March 11th, 2018

Lecture 12: Method of moments

Where are we?

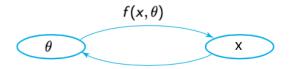
Week 1 · · · · ·	Probability reviews
Week 2 · · · · ·	Chapter 6: Statistics and Sampling Distributions
Week 4 · · · · ·	Chapter 7: Point Estimation
Week 7 · · · ·	Chapter 8: Confidence Intervals
Week 10 · · · ·	Chapter 9: Test of Hypothesis
Week 14 · · · · ·	Regression

Overview

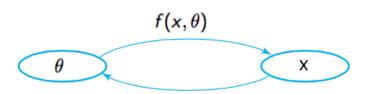
- 7.1 Point estimate
 - unbiased estimator
 - mean squared error
- 7.2 Methods of point estimation
 - method of moments
 - method of maximum likelihood.
- 7.3 Sufficient statistic
- 7.4 Information and Efficiency
 - Large sample properties of the maximum likelihood estimator
 - Bootstrap

Question of this chapter

- Given a random sample X_1, \ldots, X_n from a distribution with pmf/pdf $f(x, \theta)$ parameterized by a parameter θ
- Goal: Estimate θ



Point estimate



Definition

A point estimate $\hat{\theta}$ of a parameter θ is a single number that can be regarded as a sensible value for θ .

population parameter
$$\Longrightarrow$$
 sample \Longrightarrow estimate $\theta \Longrightarrow X_1, X_2, \dots, X_n \Longrightarrow \hat{\theta}$

Mean Squared Error

Measuring error of estimation

$$|\hat{\theta} - \theta|$$
 or $(\hat{\theta} - \theta)^2$

The error of estimation is random

Definition

The mean squared error of an estimator $\hat{\theta}$ is

$$E[(\hat{\theta} - \theta)^2]$$

Bias-variance decomposition

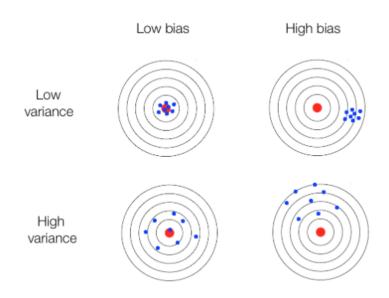
Theorem

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] = V(\hat{\theta}) + (E(\hat{\theta}) - \theta)^2$$

Bias-variance decomposition

Mean squared error = variance of estimator + $(bias)^2$

Bias-variance decomposition



Unbiased estimators

Definition

A point estimator $\hat{\theta}$ is said to be an unbiased estimator of θ if

$$E(\hat{\theta}) = \theta$$

for every possible value of θ .

Unbiased estimator

$$\Leftrightarrow$$
 Bias = 0

 \Leftrightarrow Mean squared error = variance of estimator

Method of moments

Example

Problem

Let X_1, \ldots, X_{15000} be a random sample from the exponential distribution with parameter λ , that is

$$f(x; \lambda) = \lambda e^{-\lambda x}, \quad x \ge 0$$

Provide an estimator of λ .

Exponential distribution

Parameters	$\lambda > 0$ rate, or inverse scale
Support	<i>x</i> ∈ [0, ∞)
PDF	$\lambda e^{-\lambda x}$
CDF	$1 - e^{-\lambda x}$
Quantile	–ln(1 – <i>F</i>) / λ
Mean	$\lambda^{-1} \ (= \beta)$
Median	λ^{-1} ln(2)
Mode	0
Variance	$\lambda^{-2} (= \beta^2)$
Skewness	2
Ex. kurtosis	6
Entropy	1 – ln(λ)
MGF	$\dfrac{\lambda}{\lambda - t}, ext{ for } t < \lambda$
CF	$\frac{\lambda}{\lambda - it}$
Fisher information	λ^{-2}

• The expectation of a exponential random variable is

$$E[X] = \frac{1}{\lambda}$$

• For large n, we have

$$\bar{X} = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

is close to E[X]

ullet We can compute $ar{x}$ from the data o approximate λ

Moments

- Let $X_1, ..., X_n$ be a random sample from a normal distribution with pmf or pdf f(x).
- For k = 1, 2, 3, ..., the k^{th} population moment, or k^{th} moment of the distribution f(x), is

$$E(X^k)$$

- First moment: the mean
- Second moment: $E(X^2)$

Sample moments

- Let $X_1, ..., X_n$ be a random sample from a distribution with pmf or pdf f(x).
- For k = 1, 2, 3, ..., the k^{th} sample moment is

$$\frac{X_1^k + X_2^k + \ldots + X_n^k}{n}$$

The law of large numbers provides that when $n \to \infty$

$$\frac{X_1^k + X_2^k + \ldots + X_n^k}{n} \to E(X^k)$$

Method of moments: ideas

• Let X_1, \ldots, X_n be a random sample from a distribution with pmf or pdf

$$f(x; \theta_1, \theta_2, \ldots, \theta_m)$$

• Assume that for $k = 1, \ldots, m$

$$\hat{u}_k = \frac{X_1^k + X_2^k + \ldots + X_n^k}{n} = E(X^k)$$

• Solve the system of equations for $\theta_1, \theta_2, \dots, \theta_m$

Problem

Let $X_1, ..., X_{10}$ be a random sample from the exponential distribution with parameter λ , that is

$$f(x; \lambda) = \lambda e^{-\lambda x}, \quad x \ge 0$$

The observed data are

Use the method of moments to obtain an estimator of λ .

• Equation: k=1

$$\bar{X} = \frac{X_1 + X_2 + \ldots + X_n}{n} = E(X) = \frac{1}{\lambda}$$

ullet Solve the system of equations for λ

$$\lambda = \frac{1}{\bar{X}}$$

Problem

Suppose that for a parameter $0 \le \theta \le 1$, X is the outcome of the roll of a four-sided tetrahedral die

Suppose the die is rolled 10 times with outcomes

Use the method of moments to obtain an estimator of θ .

Problem

Let X_1, \ldots, X_{10} be a random sample from a distribution with pdf

$$f(x) = \begin{cases} (\theta + 1)x^{\theta} & \text{if } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

A random sample of ten students yields data

$$x_1 = .92, x_2 = .79, x_3 = .90, x_4 = .65, x_5 = .86,$$

$$x_6 = .47, x_7 = .73, x_8 = .97, x_9 = .94, x_{10} = .77$$

Use the method of moments to obtain an estimator of θ .

Problem

Let X_1, \ldots, X_n be a random sample from the normal distribution $\mathcal{N}(0, \sigma^2)$.

Use the method of moments to obtain an estimator of σ .

Problem

Let $\beta > 1$ and X_1, \dots, X_n be a random sample from a distribution with pdf

$$f(x) = \begin{cases} \frac{\beta}{x^{\beta+1}} & \text{if } x > 1\\ 0 & \text{otherwise} \end{cases}$$

Use the method of moments to obtain an estimator of β .

Minimum variance unbiased estimator (MVUE)

Definition

Among all estimators of θ that are unbiased, choose the one that has minimum variance. The resulting $\hat{\theta}$ is called the minimum variance unbiased estimator (MVUE) of θ .

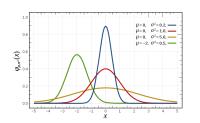
Recall:

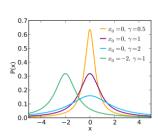
- Mean squared error = variance of estimator + $(bias)^2$
- unbiased estimator \Rightarrow bias =0
- \Rightarrow MVUE has minimum mean squared error among unbiased estimators

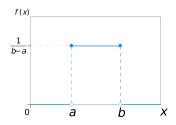
What is the best estimator of the mean?

Question: Let $X_1, ..., X_n$ be a random sample from a distribution with mean μ . What is the best estimator of μ ?

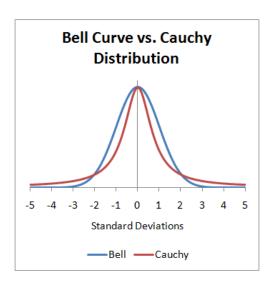
Example 7.8







Normal vs. Cauchy



What is the best estimator of the mean?

Question: Let X_1, \ldots, X_n be a random sample from a distribution with mean μ . What is the best estimator of μ ?

Answer: It depends.

- ullet Normal distribution o sample mean $ar{X}$
- ullet Cauchy distribution o sample median $ilde{X}$
- ullet Uniform distribution o no tails, uniform

$$\hat{X}_e = \frac{\text{largest number} + \text{smaller number}}{2}$$

• In all cases, 10% trimmed mean performs pretty well

MVUE of normal distributions

Theorem

Let X_1, \ldots, X_n be a random sample from a normal distribution with mean μ . Then the estimator $\hat{\mu} = \bar{X}$ is the MVUE for μ .