Mathematical statistics

March 13th, 2018

Lecture 13: Method of maximum likelihood

Mathematical statistics

Week 1 · · · · ·	Probability reviews
Week 2 · · · · •	Chapter 6: Statistics and Sampling Distributions
Week 4 · · · · ·	Chapter 7: Point Estimation
Week 7 · · · · ·	Chapter 8: Confidence Intervals
Week 10 · · · · ·	Chapter 9: Test of Hypothesis
Week 14	Regression

æ

▶ ★@ ▶ ★ 臣 ▶ ★ 臣 ▶

Overview

- 7.1 Point estimate
 - unbiased estimator
 - mean squared error
- 7.2 Methods of point estimation
 - method of moments
 - method of maximum likelihood.
- 7.3 Sufficient statistic
- 7.4 Information and Efficiency
 - Large sample properties of the maximum likelihood estimator
 - Bootstrap

Definition

A point estimate $\hat{\theta}$ of a parameter θ is a single number that can be regarded as a sensible value for θ .

 $\begin{array}{ccc} \text{population parameter} \Longrightarrow & \textit{sample} & \Longrightarrow \textit{estimate} \\ \\ \theta & \Longrightarrow X_1, X_2, \dots, X_n \Longrightarrow & \hat{\theta} \end{array}$

- **→** → **→**

Method of moments

Mathematical statistics

æ

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

• The expectation of a exponential random variable is

$$E[X] = \frac{1}{\lambda}$$

• For large *n*, we have

$$\bar{X} = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

is close to E[X]

• We can compute $ar{x}$ from the data ightarrow approximate λ

- Let X_1, \ldots, X_n be a random sample from a normal distribution with pmf or pdf f(x).
- For k = 1, 2, 3, ..., the kth population moment, or kth moment of the distribution f(x), is

$$E(X^k)$$

- First moment: the mean
- Second moment: $E(X^2)$

Sample moments

- Let X_1, \ldots, X_n be a random sample from a distribution with pmf or pdf f(x).
- For $k = 1, 2, 3, \ldots$, the k^{th} sample moment is

$$\frac{X_1^k + X_2^k + \ldots + X_n^k}{n}$$

The law of large numbers provides that when $n \to \infty$

$$\frac{X_1^k + X_2^k + \ldots + X_n^k}{n} \to E(X^k)$$

• Let X_1, \ldots, X_n be a random sample from a distribution with pmf or pdf

$$f(x; \theta_1, \theta_2, \ldots, \theta_m)$$

• Assume that for $k = 1, \ldots, m$

$$\hat{u}_k = \frac{X_1^k + X_2^k + \ldots + X_n^k}{n} = E(X^k)$$

• Solve the system of equations for $\theta_1, \theta_2, \ldots, \theta_m$

Suppose that for a parameter $0 \le \theta \le 1$, X is the outcome of the roll of a four-sided tetrahedral die

Suppose the die is rolled 10 times with outcomes

4, 1, 2, 3, 1, 2, 3, 4, 2, 3

Use the method of moments to obtain an estimator of θ .

Let X_1, \ldots, X_{10} be a random sample from a distribution with pdf

$$f(x) = egin{cases} (heta+1) x^ heta & ext{if } 0 \leq x \leq 1 \ 0 & ext{otherwise} \end{cases}$$

A random sample of ten students yields data

$$x_1 = .92, \ x_2 = .79, \ x_3 = .90, \ x_4 = .65, \ x_5 = .86,$$

$$x_6 = .47, x_7 = .73, x_8 = .97, x_9 = .94, x_{10} = .77$$

Use the method of moments to obtain an estimator of θ .

Let X_1, \ldots, X_n be a random sample from the normal distribution $\mathcal{N}(0, \sigma^2)$. Use the method of moments to obtain an estimator of σ .

Let $\beta > 1$ and X_1, \ldots, X_n be a random sample from a distribution with pdf

$$f(x) = egin{cases} rac{eta}{x^{eta+1}} & ext{if } x > 1 \ 0 & ext{otherwise} \end{cases}$$

Use the method of moments to obtain an estimator of β .

Method of maximum likelihood

Mathematical statistics

æ

Definition

The random variables $X_1, X_2, ..., X_n$ are said to form a (simple) random sample of size n if

- the X_i 's are independent random variables
- **2** every X_i has the same probability distribution

/₽ ► < ∃ ►

Definition

Two random variables X and Y are said to be independent if for every pair of x and y values,

 $P(X = x, Y = y) = P_X(x) \cdot P_Y(y)$ if the variables are discrete

or

 $f(x, y) = f_X(x) \cdot f_Y(y)$ if the variables are continuous

Let $X_1, X_2, ..., X_n$ be a random sample of size *n* from a distribution with density function $f_X(x)$.

Then the density of the joint distribution of $(X_1, X_2, ..., X_n)$ is

$$f_{joint}(x_1, x_2, \ldots, x_n) = \prod_{i=1}^n f_X(x_i)$$

Maximum likelihood estimator

• Let $X_1, X_2, ..., X_n$ have joint pmf or pdf

$$f_{joint}(x_1, x_2, \ldots, x_n; \theta)$$

where θ is unknown.

- When x₁,..., x_n are the observed sample values and this expression is regarded as a function of θ, it is called the likelihood function.
- The maximum likelihood estimates θ_{ML} are the value for θ that maximize the likelihood function:

$$f_{joint}(x_1, x_2, \dots, x_n; \theta_{ML}) \ge f_{joint}(x_1, x_2, \dots, x_n; \theta) \quad \forall \theta$$

- Step 1: Write down the likelihood function.
- Step 2: Can you find the maximum of this function?
- Step 3: Try taking the logarithm of this function.
- Step 4: Find the maximum of this new function.

To find the maximum of a function of θ :

- $\bullet\,$ compute the derivative of the function with respect to $\theta\,$
- set this expression of the derivative to 0
- solve the equation

Let X_1, \ldots, X_{10} be a random sample from the exponential distribution with parameter λ , that is

$$f(x; \lambda) = \lambda e^{-\lambda x}, \quad x \ge 0$$

The observed data are

3.11, 0.64, 2.55, 2.20, 5.44,

3.42, 1.39, 8.13, 1.82, 1.30

Use the method of maximum likelihood to obtain an estimator of λ .

Let X_1, \ldots, X_{10} be a random sample from a distribution with pdf

$$f(x) = egin{cases} (heta+1)x^ heta & ext{if } 0 \leq x \leq 1 \ 0 & ext{otherwise} \end{cases}$$

A random sample of ten students yields data

$$x_1 = .92, \ x_2 = .79, \ x_3 = .90, \ x_4 = .65, \ x_5 = .86,$$

$$x_6 = .47, x_7 = .73, x_8 = .97, x_9 = .94, x_{10} = .77$$

Use the method of maximum likelihood to obtain an estimator of θ .

Let X_1, \ldots, X_n be a random sample from the normal distribution $\mathcal{N}(0, \sigma^2)$, that is

$$f(x,\theta) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}$$

Use the method of maximum likelihood to obtain an estimator of σ .

Let $\beta > 1$ and X_1, \ldots, X_n be a random sample from a distribution with pdf

$$f(x) = egin{cases} rac{eta}{x^{eta+1}} & ext{if } x > 1 \ 0 & ext{otherwise} \end{cases}$$

Use the method of maximum likelihood to obtain an estimator of β .

- **→** → **→**