Mathematical statistics

March 15th, 2018

Lecture 14: Method of maximum likelihood

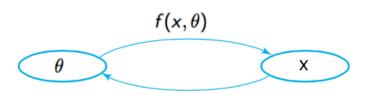
Where are we?

Week 1 · · · · ·	Probability reviews
Week 2 · · · · ·	Chapter 6: Statistics and Sampling Distributions
Week 4 · · · · ·	Chapter 7: Point Estimation
Week 7 · · · ·	Chapter 8: Confidence Intervals
Week 10 · · · ·	Chapter 9: Test of Hypothesis
Week 14 · · · · ·	Regression

Overview

- 7.1 Point estimate
 - unbiased estimator
 - mean squared error
- 7.2 Methods of point estimation
 - method of moments
 - method of maximum likelihood.
- 7.3 Sufficient statistic
- 7.4 Information and Efficiency
 - Large sample properties of the maximum likelihood estimator
 - Bootstrap

Point estimate



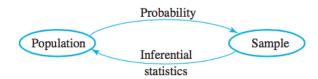
Definition

A point estimate $\hat{\theta}$ of a parameter θ is a single number that can be regarded as a sensible value for θ .

population parameter
$$\Longrightarrow$$
 sample \Longrightarrow estimate $\theta \Longrightarrow X_1, X_2, \dots, X_n \Longrightarrow \hat{\theta}$

Method of maximum likelihood

Random sample



Definition

The random variables $X_1, X_2, ..., X_n$ are said to form a (simple) random sample of size n if

- the X_i 's are independent random variables

Independent random variables

Definition

Two random variables X and Y are said to be independent if for every pair of x and y values,

$$P(X = x, Y = y) = P_X(x) \cdot P_Y(y)$$
 if the variables are discrete

or

$$f(x, y) = f_X(x) \cdot f_Y(y)$$
 if the variables are continuous

Random sample

Let $X_1, X_2, ..., X_n$ be a random sample of size n from a distribution with density function $f_X(x)$.

Then the density of the joint distribution of $(X_1, X_2, ..., X_n)$ is

$$f_{joint}(x_1, x_2, \dots, x_n) = \prod_{i=1}^n f_X(x_i)$$

Maximum likelihood estimator

• Let $X_1, X_2, ..., X_n$ have joint pmf or pdf

$$f_{joint}(x_1, x_2, \ldots, x_n; \theta)$$

where θ is unknown.

- When x_1, \ldots, x_n are the observed sample values and this expression is regarded as a function of θ , it is called the likelihood function.
- The maximum likelihood estimates θ_{ML} are the value for θ that maximize the likelihood function:

$$f_{joint}(x_1, x_2, \dots, x_n; \theta_{ML}) \ge f_{joint}(x_1, x_2, \dots, x_n; \theta) \quad \forall \theta$$

How to find the MLE?

- Step 1: Write down the likelihood function.
- Step 2: Can you find the maximum of this function?
- Step 3: Try taking the logarithm of this function.
- Step 4: Find the maximum of this new function.

To find the maximum of a function of θ :

- ullet compute the derivative of the function with respect to heta
- set this expression of the derivative to 0
- solve the equation

Problem

Let X_1, \ldots, X_{10} be a random sample from the exponential distribution with parameter λ , that is

$$f(x; \lambda) = \lambda e^{-\lambda x}, \quad x \ge 0$$

The observed data are

Use the method of maximum likelihood to obtain an estimator of λ .

Problem

Let X_1, \ldots, X_{10} be a random sample from a distribution with pdf

$$f(x) = \begin{cases} (\theta + 1)x^{\theta} & \text{if } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

A random sample of ten students yields data

$$x_1 = .92, \ x_2 = .79, \ x_3 = .90, \ x_4 = .65, \ x_5 = .86,$$

$$x_6 = .47, x_7 = .73, x_8 = .97, x_9 = .94, x_{10} = .77$$

Use the method of maximum likelihood to obtain an estimator of θ .

Problem

Let $X_1, ..., X_n$ be a random sample from the normal distribution $\mathcal{N}(0, \sigma^2)$, that is

$$f(x,\theta) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}$$

Use the method of maximum likelihood to obtain an estimator of σ .

Problem

Let $\beta > 1$ and X_1, \dots, X_n be a random sample from a distribution with pdf

$$f(x) = \begin{cases} \frac{\beta}{x^{\beta+1}} & \text{if } x > 1\\ 0 & \text{otherwise} \end{cases}$$

Use the method of maximum likelihood to obtain an estimator of β .