Mathematical statistics

March $18^{\text {th }}, 2018$
Lecture 15: Sufficient statistics

Week 1	Probability reviews
Week 2	Chapter 6: Statistics and Sampling Distributions
Week 4	Chapter 7: Point Estimation
Week 7	Chapter 8: Confidence Intervals
Week 10	Chapter 9: Test of Hypothesis
Week 14	Regression

Overview

7.1 Point estimate

- unbiased estimator
- mean squared error
7.2 Methods of point estimation
- method of moments
- method of maximum likelihood.
7.3 Sufficient statistic
7.4 Information and Efficiency
- Large sample properties of the maximum likelihood estimator
- Bootstrap

Question of this chapter

- Given a random sample X_{1}, \ldots, X_{n} from a distribution with pmf/pdf $f(x, \theta)$ parameterized by a parameter θ
- Goal: Estimate θ

Point estimate

$$
f(x, \theta)
$$

Definition

A point estimate $\hat{\theta}$ of a parameter θ is a single number that can be regarded as a sensible value for θ.

$$
\begin{aligned}
\text { population parameter } & \Longrightarrow \text { sample } \\
\theta & \Longrightarrow X_{1}, X_{2}, \ldots, X_{n}
\end{aligned}
$$

Method of maximum likelihood

Random sample

Definition

The random variables $X_{1}, X_{2}, \ldots, X_{n}$ are said to form a (simple) random sample of size n if
(1) the X_{i} 's are independent random variables
(2) every X_{i} has the same probability distribution

Random sample

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of size n from a distribution with density function $f_{X}(x)$.

Then the density of the joint distribution of $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is

$$
f_{\text {joint }}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} f_{X}\left(x_{i}\right)
$$

Maximum likelihood estimator

- Let $X_{1}, X_{2}, \ldots, X_{n}$ have joint pmf or pdf

$$
f_{\text {joint }}\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)
$$

where θ is unknown.

- When x_{1}, \ldots, x_{n} are the observed sample values and this expression is regarded as a function of θ, it is called the likelihood function.
- The maximum likelihood estimates $\theta_{M L}$ are the value for θ that maximize the likelihood function:

$$
f_{\text {joint }}\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta_{M L}\right) \geq f_{\text {joint }}\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)
$$

How to find the MLE?

- Step 1: Write down the likelihood function.
- Step 2: Can you find the maximum of this function?
- Step 3: Try taking the logarithm of this function.
- Step 4: Find the maximum of this new function.

To find the maximum of a function of θ :

- compute the derivative of the function with respect to θ
- set this expression of the derivative to 0
- solve the equation

Example

Problem

Let X_{1}, \ldots, X_{10} be a random sample from the exponential distribution with parameter λ, that is

$$
f(x ; \lambda)=\lambda e^{-\lambda x}, \quad x \geq 0
$$

The observed data are

$$
\begin{aligned}
& 3.11,0.64,2.55,2.20,5.44, \\
& 3.42,1.39,8.13,1.82,1.30
\end{aligned}
$$

Use the method of maximum likelihood to obtain an estimator of λ.

Example

Problem

Let X_{1}, \ldots, X_{10} be a random sample from a distribution with pdf

$$
f(x)=\left\{\begin{array}{l}
(\theta+1) x^{\theta} \quad \text { if } 0 \leq x \leq 1 \\
0 \quad \text { otherwise }
\end{array}\right.
$$

A random sample of ten students yields data

$$
\begin{aligned}
& x_{1}=.92, x_{2}=.79, x_{3}=.90, x_{4}=.65, x_{5}=.86, \\
& x_{6}=.47, x_{7}=.73, x_{8}=.97, x_{9}=.94, x_{10}=.77
\end{aligned}
$$

Use the method of maximum likelihood to obtain an estimator of θ.

Example

Problem

Let X_{1}, \ldots, X_{n} be a random sample from the normal distribution $\mathcal{N}\left(0, \sigma^{2}\right)$, that is

$$
f(x, \theta)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{x^{2}}{2 \sigma^{2}}}
$$

Use the method of maximum likelihood to obtain an estimator of σ.

Example

Problem

Let $\beta>1$ and X_{1}, \ldots, X_{n} be a random sample from a distribution with pdf

$$
f(x)= \begin{cases}\frac{\beta}{x^{\beta+1}} & \text { if } x>1 \\ 0 & \text { otherwise }\end{cases}
$$

Use the method of maximum likelihood to obtain an estimator of β.

Sufficient statistic

Example

- Your professor stores a dataset $x_{1}, x_{2}, \ldots, x_{n}$ in his computer. He says it is a random sample from the exponential distribution

$$
f_{X}(x)=\lambda e^{-\lambda x}, \quad x \geq 0
$$

where λ is an unknown parameter. He wants you to work on the dataset and give him a good estimate of λ

- Assume that the sample size is very large, $n=10^{20}$, and you could not copy the whole dataset
- You can compute any summary statistics of the dataset using the computer, but the lab is closing in 5 minutes
- What will you do?

Example

- If you are using the method of moments

$$
\bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}
$$

- If you are using the method of maximum likelihood

$$
L(\lambda)=\lambda^{n} e^{-\lambda\left(x_{1}+x_{2}+\ldots+x_{n}\right)}
$$

- In both case, it seems that you need to only save n and $t=x_{1}+x_{2}+\ldots+x_{n}$

Conditional probability

- For discrete random variables, the conditional probability mass function of Y given the occurrence of the value x of X can be written according to its definition as:

$$
P(Y=y \mid X=x)=\frac{P(Y=y, X=x)}{P(X=x)}
$$

- For continuous random variables, the conditional probability of Y given the occurrence of the value x of X has density function

$$
f_{Y}(y \mid X=x)=\frac{f_{\text {joint }}(y, x)}{f(x)}
$$

- Basic estimation problem:
- Given a density function $f(x, \theta)$ and a sample $X_{1}, X_{2}, \ldots, X_{n}$
- Construct a statistic $\hat{\theta}=T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$
- Different statistic t leads different estimate, different accuracies
- If, however, the distribution of $t\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ does not depend on θ, then it is no good
- Similarly, if the conditional probability

$$
P\left(X_{1}, X_{2}, \ldots, X_{n} \mid T\right)
$$

does not depend on θ, then this means that $T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ contained all the information to estimate θ

Sufficient statistic

Definition

A statistic $T=t\left(X_{1}, \ldots, X_{n}\right)$ is said to be sufficient for making inferences about a parameter θ if the joint distribution of $X_{1}, X_{2}, \ldots, X_{n}$ given that $T=t$ does not depend upon θ for every possible value t of the statistic T.

Fisher-Neyman factorization theorem

Theorem

T is sufficient for if and only if nonnegative functions g and h can be found such that

$$
f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)=g\left(t\left(x_{1}, x_{2}, \ldots, x_{n}\right), \theta\right) \cdot h\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

i.e. the joint density can be factored into a product such that one factor, h does not depend on θ; and the other factor, which does depend on θ, depends on x only through $t(x)$.

Example

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of from a Poisson distribution with parameter λ

$$
f(x, \lambda)=\frac{1}{x!} e^{-\lambda x} \quad x=0,1,2, \ldots
$$

where λ is unknown.

- Find a sufficient statistic of λ.

Jointly sufficient statistic

Definition

The m statistics $T_{1}=t_{1}\left(X_{1}, \ldots, X_{n}\right), T_{2}=t_{2}\left(X_{1}, \ldots, X_{n}\right), \ldots$, $T_{m}=t_{m}\left(X_{1}, \ldots, X_{n}\right)$ are said to be jointly sufficient for the parameters $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$ if the joint distribution of $X_{1}, X_{2}, \ldots, X_{n}$ given that

$$
T_{1}=t_{1}, T_{2}=t_{2}, \ldots, T_{m}=t_{m}
$$

does not depend upon $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$ for every possible value $t_{1}, t_{2}, \ldots, t_{m}$ of the statistics.

Fisher-Neyman factorization theorem

Theorem

$T_{1}, T_{2}, \ldots, T_{m}$ are sufficient for $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$ if and only if nonnegative functions g and h can be found such that

$$
\begin{aligned}
f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)= & g\left(t_{1}, t_{2}, \ldots, t_{m}, \theta_{1}, \theta_{2}, \ldots, \theta_{k}\right) \\
& \cdot h\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

Example 3

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from $\mathcal{N}\left(\mu, \sigma^{2}\right)$

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

- Prove that

$$
T_{1}=X_{1}+\ldots+X_{n}, \quad T_{2}=X_{1}^{2}+X_{2}^{2}+\ldots+X_{n}^{2}
$$

are jointly sufficient for the two parameters μ and σ.

Example 4

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a Gamma distribution

$$
f_{X}(x)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{-x / \beta}
$$

where α, β is unknown.

- Prove that

$$
T_{1}=X_{1}+\ldots+X_{n}, \quad T_{2}=\prod_{i=1}^{n} X_{i}
$$

are jointly sufficient for the two parameters α and β.

