Mathematical statistics

March 18th, 2018

Lecture 15: Sufficient statistics

Where are we?

Week 1 · · · · ·	Probability reviews
Week 2 · · · · ·	Chapter 6: Statistics and Sampling Distributions
Week 4 · · · · ·	Chapter 7: Point Estimation
Week 7 · · · ·	Chapter 8: Confidence Intervals
Week 10 · · · ·	Chapter 9: Test of Hypothesis
Week 14 · · · · ·	Regression

Overview

- 7.1 Point estimate
 - unbiased estimator
 - mean squared error
- 7.2 Methods of point estimation
 - method of moments
 - method of maximum likelihood.
- 7.3 Sufficient statistic
- 7.4 Information and Efficiency
 - Large sample properties of the maximum likelihood estimator
 - Bootstrap

Question of this chapter

- Given a random sample X_1, \ldots, X_n from a distribution with pmf/pdf $f(x, \theta)$ parameterized by a parameter θ
- Goal: Estimate θ

Point estimate

Definition

A point estimate $\hat{\theta}$ of a parameter θ is a single number that can be regarded as a sensible value for θ .

population parameter
$$\Longrightarrow$$
 sample \Longrightarrow estimate $\theta \Longrightarrow X_1, X_2, \dots, X_n \Longrightarrow \hat{\theta}$

Method of maximum likelihood

Random sample

Definition

The random variables $X_1, X_2, ..., X_n$ are said to form a (simple) random sample of size n if

- the X_i 's are independent random variables

Random sample

Let $X_1, X_2, ..., X_n$ be a random sample of size n from a distribution with density function $f_X(x)$.

Then the density of the joint distribution of $(X_1, X_2, ..., X_n)$ is

$$f_{joint}(x_1, x_2, \dots, x_n) = \prod_{i=1}^n f_X(x_i)$$

Maximum likelihood estimator

• Let $X_1, X_2, ..., X_n$ have joint pmf or pdf

$$f_{joint}(x_1, x_2, \ldots, x_n; \theta)$$

where θ is unknown.

- When x_1, \ldots, x_n are the observed sample values and this expression is regarded as a function of θ , it is called the likelihood function.
- The maximum likelihood estimates θ_{ML} are the value for θ that maximize the likelihood function:

$$f_{joint}(x_1, x_2, \dots, x_n; \theta_{ML}) \ge f_{joint}(x_1, x_2, \dots, x_n; \theta) \quad \forall \theta$$

How to find the MLE?

- Step 1: Write down the likelihood function.
- Step 2: Can you find the maximum of this function?
- Step 3: Try taking the logarithm of this function.
- Step 4: Find the maximum of this new function.

To find the maximum of a function of θ :

- ullet compute the derivative of the function with respect to heta
- set this expression of the derivative to 0
- solve the equation

Problem

Let X_1, \ldots, X_{10} be a random sample from the exponential distribution with parameter λ , that is

$$f(x; \lambda) = \lambda e^{-\lambda x}, \quad x \ge 0$$

The observed data are

Use the method of maximum likelihood to obtain an estimator of λ .

Problem

Let X_1, \ldots, X_{10} be a random sample from a distribution with pdf

$$f(x) = \begin{cases} (\theta + 1)x^{\theta} & \text{if } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

A random sample of ten students yields data

$$x_1 = .92, \ x_2 = .79, \ x_3 = .90, \ x_4 = .65, \ x_5 = .86,$$

$$x_6 = .47, x_7 = .73, x_8 = .97, x_9 = .94, x_{10} = .77$$

Use the method of maximum likelihood to obtain an estimator of θ .

Problem

Let $X_1, ..., X_n$ be a random sample from the normal distribution $\mathcal{N}(0, \sigma^2)$, that is

$$f(x,\theta) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}$$

Use the method of maximum likelihood to obtain an estimator of σ .

Problem

Let $\beta > 1$ and X_1, \dots, X_n be a random sample from a distribution with pdf

$$f(x) = \begin{cases} \frac{\beta}{x^{\beta+1}} & \text{if } x > 1\\ 0 & \text{otherwise} \end{cases}$$

Use the method of maximum likelihood to obtain an estimator of β .

Sufficient statistic

Your professor stores a dataset x₁, x₂, ..., x_n in his computer.
He says it is a random sample from the exponential distribution

$$f_X(x) = \lambda e^{-\lambda x}, \quad x \ge 0$$

where λ is an unknown parameter. He wants you to work on the dataset and give him a good estimate of λ

- Assume that the sample size is very large, $n = 10^{20}$, and you could not copy the whole dataset
- You can compute any summary statistics of the dataset using the computer, but the lab is closing in 5 minutes
- What will you do?

• If you are using the method of moments

$$\bar{x} = \frac{x_1 + x_2 + \ldots + x_n}{n}$$

If you are using the method of maximum likelihood

$$L(\lambda) = \lambda^n e^{-\lambda(x_1 + x_2 + \dots + x_n)}$$

• In both case, it seems that you need to only save n and $t = x_1 + x_2 + \ldots + x_n$

Conditional probability

 For discrete random variables, the conditional probability mass function of Y given the occurrence of the value x of X can be written according to its definition as:

$$P(Y = y | X = x) = \frac{P(Y = y, X = x)}{P(X = x)}$$

 For continuous random variables, the conditional probability of Y given the occurrence of the value x of X has density function

$$f_Y(y|X=x) = \frac{f_{joint}(y,x)}{f(x)}$$

Some observations

- Basic estimation problem:
 - Given a density function $f(x, \theta)$ and a sample X_1, X_2, \dots, X_n
 - Construct a statistic $\hat{\theta} = T(X_1, X_2, \dots, X_n)$
 - Different statistic t leads different estimate, different accuracies
- If, however, the distribution of $t(X_1, X_2, ..., X_n)$ does not depend on θ , then it is no good
- Similarly, if the conditional probability

$$P(X_1, X_2, \ldots, X_n | T)$$

does not depend on θ , then this means that $T(X_1, X_2, \dots, X_n)$ contained all the information to estimate θ

Sufficient statistic

Definition

A statistic $T=t(X_1,\ldots,X_n)$ is said to be sufficient for making inferences about a parameter θ if the joint distribution of X_1,X_2,\ldots,X_n given that T=t does not depend upon θ for every possible value t of the statistic T.

Fisher-Neyman factorization theorem

Theorem

T is sufficient for if and only if nonnegative functions g and h can be found such that

$$f(x_1, x_2, ..., x_n; \theta) = g(t(x_1, x_2, ..., x_n), \theta) \cdot h(x_1, x_2, ..., x_n)$$

i.e. the joint density can be factored into a product such that one factor, h does not depend on θ ; and the other factor, which does depend on θ , depends on x only through t(x).

• Let $X_1, X_2, ..., X_n$ be a random sample of from a Poisson distribution with parameter λ

$$f(x,\lambda) = \frac{1}{x!}e^{-\lambda x}$$
 $x = 0, 1, 2, ...,$

where λ is unknown.

• Find a sufficient statistic of λ .

Jointly sufficient statistic

Definition

The m statistics $T_1 = t_1(X_1, \ldots, X_n)$, $T_2 = t_2(X_1, \ldots, X_n)$, ..., $T_m = t_m(X_1, \ldots, X_n)$ are said to be jointly sufficient for the parameters $\theta_1, \theta_2, \ldots, \theta_k$ if the joint distribution of X_1, X_2, \ldots, X_n given that

$$T_1 = t_1, T_2 = t_2, \dots, T_m = t_m$$

does not depend upon $\theta_1, \theta_2, \dots, \theta_k$ for every possible value t_1, t_2, \dots, t_m of the statistics.

Fisher-Neyman factorization theorem

Theorem

 T_1, T_2, \ldots, T_m are sufficient for $\theta_1, \theta_2, \ldots, \theta_k$ if and only if nonnegative functions g and h can be found such that

$$f(x_1, x_2, \dots, x_n; \theta_1, \theta_2, \dots, \theta_k) = g(t_1, t_2, \dots, t_m, \theta_1, \theta_2, \dots, \theta_k) \cdot h(x_1, x_2, \dots, x_n)$$

• Let $X_1, X_2, ..., X_n$ be a random sample from $\mathcal{N}(\mu, \sigma^2)$

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Prove that

$$T_1 = X_1 + \ldots + X_n, \qquad T_2 = X_1^2 + X_2^2 + \ldots + X_n^2$$

are jointly sufficient for the two parameters μ and σ .

• Let $X_1, X_2, ..., X_n$ be a random sample from a Gamma distribution

$$f_X(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}$$

where α, β is unknown.

Prove that

$$T_1 = X_1 + \ldots + X_n, \qquad T_2 = \prod_{i=1}^n X_i$$

are jointly sufficient for the two parameters α and β .

