Mathematical statistics

March 20th, 2018

Lecture 16: Sufficient statistics and Information

Where are we?

Week 1 · · · · ·	Probability reviews
Week 2 · · · · ·	Chapter 6: Statistics and Sampling Distributions
Week 4 · · · · ·	Chapter 7: Point Estimation
Week 7 · · · ·	Chapter 8: Confidence Intervals
Week 10 · · · ·	Chapter 9: Test of Hypothesis
Week 14 · · · · ·	Regression

Overview

- 7.1 Point estimate
 - unbiased estimator
 - mean squared error
- 7.2 Methods of point estimation
 - method of moments
 - method of maximum likelihood.
- 7.3 Sufficient statistic
- 7.4 Information and Efficiency
 - Large sample properties of the maximum likelihood estimator
 - Bootstrap

Sufficient statistic

Sufficient statistic

Definition

A statistic $T=t(X_1,\ldots,X_n)$ is said to be sufficient for making inferences about a parameter θ if the joint distribution of X_1,X_2,\ldots,X_n given that T=t does not depend upon θ for every possible value t of the statistic T.

Fisher-Neyman factorization theorem

Theorem

T is sufficient for if and only if nonnegative functions g and h can be found such that

$$f(x_1, x_2, ..., x_n; \theta) = g(t(x_1, x_2, ..., x_n), \theta) \cdot h(x_1, x_2, ..., x_n)$$

i.e. the joint density can be factored into a product such that one factor, h does not depend on θ ; and the other factor, which does depend on θ , depends on x only through t(x).

• Let $X_1, X_2, ..., X_n$ be a random sample of from a Poisson distribution with parameter λ

$$f(x,\lambda) = \frac{1}{x!}e^{-\lambda x}$$
 $x = 0, 1, 2, ...,$

where λ is unknown.

• Find a sufficient statistic of λ .

Jointly sufficient statistic

Definition

The m statistics $T_1 = t_1(X_1, \ldots, X_n)$, $T_2 = t_2(X_1, \ldots, X_n)$, ..., $T_m = t_m(X_1, \ldots, X_n)$ are said to be jointly sufficient for the parameters $\theta_1, \theta_2, \ldots, \theta_k$ if the joint distribution of X_1, X_2, \ldots, X_n given that

$$T_1 = t_1, T_2 = t_2, \ldots, T_m = t_m$$

does not depend upon $\theta_1, \theta_2, \dots, \theta_k$ for every possible value t_1, t_2, \dots, t_m of the statistics.

Fisher-Neyman factorization theorem

Theorem

 T_1, T_2, \ldots, T_m are sufficient for $\theta_1, \theta_2, \ldots, \theta_k$ if and only if nonnegative functions g and h can be found such that

$$f(x_1, x_2, \dots, x_n; \theta_1, \theta_2, \dots, \theta_k) = g(t_1, t_2, \dots, t_m, \theta_1, \theta_2, \dots, \theta_k) \cdot h(x_1, x_2, \dots, x_n)$$

• Let $X_1, X_2, ..., X_n$ be a random sample from $\mathcal{N}(\mu, \sigma^2)$

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Prove that

$$T_1 = X_1 + \ldots + X_n, \qquad T_2 = X_1^2 + X_2^2 + \ldots + X_n^2$$

are jointly sufficient for the two parameters μ and σ .

• Let $X_1, X_2, ..., X_n$ be a random sample from a Gamma distribution

$$f_X(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}$$

where α, β is unknown.

Prove that

$$T_1 = X_1 + \ldots + X_n, \qquad T_2 = \prod_{i=1}^n X_i$$

are jointly sufficient for the two parameters α and β .

Information

Fisher information

Definition

The Fisher information $I(\theta)$ in a single observation from a pmf or pdf $f(x;\theta)$ is the variance of the random variable $U=\frac{\partial \log f(X,\theta)}{\partial \theta}$, which is

$$I(\theta) = Var \left[\frac{\partial \log f(X, \theta)}{\partial \theta} \right]$$

Note: We always have E[U] = 0

Fisher information

We have

$$\sum_{x} f(x, \theta) = 1 \quad \forall \theta$$

Thus

$$E[U] = E\left[\frac{\partial \log f(X, \theta)}{\partial \theta}\right]$$
$$= \sum_{x} \frac{\partial \log f(x, \theta)}{\partial \theta} f(x, \theta)$$
$$= \sum_{x} \frac{\partial f(x, \theta)}{\partial \theta} = 0$$

Problem

Let X be distributed by

$$\begin{array}{c|cccc} x & 0 & 1 \\ \hline f(x,\theta) & 1-\theta & \theta \end{array}$$

Compute $I(X, \theta)$.

Hint:

• If x = 1, then $f(x, \theta) = \theta$. Thus

$$u(x) = \frac{\partial \log f(x, \theta)}{\partial \theta} = \frac{1}{\theta}$$

• How about x = 0?

Problem

Let X be distributed by

$$\begin{array}{c|cccc} x & 0 & 1 \\ \hline f(x,\theta) & 1-\theta & \theta \end{array}$$

Compute $I(X, \theta)$.

We have

$$Var[U] = E[U^{2}] - (E[U])^{2} = E[U^{2}]$$

$$= \sum_{x=0,1} U^{2}(x)f(x,\theta)$$

$$= \frac{1}{(1-\theta)^{2}} \cdot (1-\theta) + \frac{1}{\theta^{2}} \cdot \theta$$

The Cramer-Rao Inequality

Theorem

Assume a random sample $X_1, X_2, ..., X_n$ from the distribution with pmf or pdf $f(x, \theta)$ such that the set of possible values does not depend on θ . If the statistic $T = t(X_1, X_2, ..., X_n)$ is an unbiased estimator for the parameter θ , then

$$Var(T) \ge \frac{1}{n \cdot I(\theta)}$$

Proof for n = 1

Recall that E[U] = 0 and $E[T] = \theta$ (since T is an unbiased estimator of θ) we have

$$Cov(T, U) = E[TU] - E[U] \cdot E[T]$$

$$= \sum_{x} t(x) \frac{\partial \log f(x, \theta)}{\partial \theta} f(x, \theta)$$

$$= \sum_{x} t(x) \frac{\partial f(x, \theta)}{\partial \theta} \frac{1}{f(x, \theta)} f(x, \theta)$$

$$= \frac{\partial}{\partial \theta} \left(\sum_{x} t(x) f(x, \theta) \right) = 1$$

Proof for n = 1

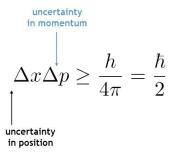
The CauchySchwarz inequality shows that

$$Cov(T, U) \le \sqrt{Var(T) \cdot Var(U)}$$

which implies

$$Var(T) \geq \frac{1}{I(\theta)}$$
.

Heisenberg's Uncertainty Principle



The more accurately you know the position (i.e., the smaller Δx is), the less accurately you know the momentum (i.e., the larger Δp is); and vice versa

Efficiency

Theorem

Let $T = t(X_1, X_2, ..., X_n)$ is an unbiased estimator for the parameter θ , the ratio of the lower bound to the variance of T is its efficiency

$$\textit{Efficiency} = \frac{1}{\textit{nI}(\theta)\textit{V}(\textit{T})} \leq 1$$

T is said to be an efficient estimator if T achieves the CramerRao lower bound (i.e., the efficiency is 1).

Note: An efficient estimator is a minimum variance unbiased (MVUE) estimator.

Large Sample Properties of the MLE

Theorem

Given a random sample $X_1, X_2, ..., X_n$ from the distribution with pmf or pdf $f(x,\theta)$ such that the set of possible values does not depend on θ . Then for large n the maximum likelihood estimator $\hat{\theta}$ has approximately a normal distribution with mean θ and variance $\frac{1}{n \cdot I(\theta)}$.

More precisely, the limiting distribution of $\sqrt{n}(\hat{\theta} - \theta)$ is normal with mean 0 and variance $1/I(\theta)$.

The Central Limit Theorem

Theorem

Let X_1, X_2, \ldots, X_n be a random sample from a distribution with mean μ and variance σ^2 . Then, in the limit when $n \to \infty$, the standardized version of \bar{X} have the standard normal distribution

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\leq z\right)=\mathbb{P}[Z\leq z]=\Phi(z)$$