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Overview

8.1 Basic properties of confidence intervals (CIs)

Interpreting CIs
General principles to derive CI

8.2 Large-sample confidence intervals for a population mean

Using the Central Limit Theorem to derive CIs

8.3 Intervals based on normal distribution

Using Student’s t-distribution

8.4 CIs for standard deviation
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Confidence Intervals
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Framework

Let X1,X2, . . . ,Xn be a random sample from a distribution
f (x , θ)

In Chapter 7, we learnt methods to construct an estimate θ̂ of
θ

Goal: we want to indicate the degree of uncertainty
associated with this random prediction

One way to do so is to construct a confidence interval
[θ̂ − a, θ̂ + b] such that

P[θ ∈ [θ̂ − a, θ̂ + b]] = 95%
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Principles for deriving CIs

If X1,X2, . . . ,Xn is a random sample from a distribution f (x , θ),
then

Find a random variable Y = h(X1,X2, . . . ,Xn; θ) such that
the probability distribution of Y does not depend on θ or on
any other unknown parameters.

Find constants a, b such that

P [a < h(X1,X2, . . . ,Xn; θ) < b] = 0.95

Manipulate these inequalities to isolate θ

P [`(X1,X2, . . . ,Xn) < θ < u(X1,X2, . . . ,Xn)] = 0.95
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8.1: Normal distribution with know σ

Assumptions:

Normal distribution
σ is known

95% confidence interval
If after observing X1 = x1,X2 = x2, . . . ,Xn = xn, (n > 40), we
compute the observed sample mean x̄ . Then(

x̄ − 1.96
σ√
n
, x̄ + 1.96

σ√
n

)
is a 95% confidence interval of µ
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Assumptions

Section 8.1

Normal distribution
σ is known

Section 8.2

Normal distribution
→ use Central Limit Theorem → needs n > 30
σ is known
→ replace σ by s → needs n > 40

Section 8.3

Normal distribution
σ is known

→ Introducing t-distribution
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100(1− α)% confidence interval
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100(1− α)% confidence interval
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8.2: Large-sample CIs of the population mean
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Principles

Central Limit Theorem
X̄ − µ
σ/
√
n

is approximately normal when n > 30

Moreover, when n is sufficiently large s ≈ σ
Conclusion:

X̄ − µ
s/
√
n

is approximately normal when n is sufficiently large

If n > 40, we can ignore the normal assumption and replace σ
by s
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95% confidence interval

If after observing X1 = x1,X2 = x2, . . . ,Xn = xn, (n > 40), we
compute the observed sample mean x̄ and sample standard
deviation s. Then (

x̄ − 1.96
s√
n
, x̄ + 1.96

s√
n

)
is a 95% confidence interval of µ
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100(1− α)% confidence interval

If after observing X1 = x1,X2 = x2, . . . ,Xn = xn, (n > 40), we
compute the observed sample mean x̄ and sample standard
deviation s. Then (

x̄ − zα/2
s√
n
, x̄ + zα/2

s√
n

)
is a 95% confidence interval of µ
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One-sided CIs (Confidence bounds)
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One-sided CIs
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CIs vs. one-sided CIs

CIs:

100(1− α)% confidence(
x̄ − zα/2

σ√
n
, x̄ + zα/2

σ√
n

)
95% confidence(
x̄ − 1.96

σ√
n
, x̄ + 1.96

σ√
n

)

One-sided CIs:

100(1− α)% confidence(
−∞, x̄ + zα

σ√
n

)
95% confidence(
−∞, x̄ + 1.64

σ√
n

)
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Confidence level

Problem

Determine the confidence level for each of the following
large-sample confidence intervals/bounds:

(a) x̄ + 0.84s/
√
n

(b)
(
x̄ − 0.84s/

√
n, x̄ + 0.84s/

√
n
)

(c) x̄ − 2.05s/
√
n
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Φ(z)
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8.3: Intervals based on normal distributions
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Assumptions

the population of interest is normal
(i.e., X1, . . . ,Xn constitutes a random sample from a normal
distribution N (µ, σ2)).

σ is unknown

→ we want to consider cases when n is small.
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Principles

When n < 40, S is no longer close to σ. Thus

T =
X̄ − µ
S/
√
n

does not follow the standard normal distribution.

{Section 6} But since we know the distribution of X ,
technically we can compute the distribution of T

Moreover, the distribution of T does not depend on µ and σ
{More reading: Section 6.4}
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t distributions with degree of freedom ν

Probability density function

f (t) =
Γ(ν+1

2 )
√
νπ Γ(ν2 )

(
1 +

t2

ν

)− ν+1
2
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t distributions
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t distributions

When X̄ is the mean of a random sample of size n from a normal
distribution with mean µ, the rv

X̄ − µ
S/
√
n

has the t distribution with n − 1 degree of freedom (df).
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t distributions
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How to do computation with t distributions

Instead of looking up the normal Z -table A3, look up the two
t-tables A5 and A7.

Idea
P[T ≥ tα,ν ] = α

{From t, find α} → using table A7

{From α, find t} → using table A5
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t → α
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α→ t
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Confidence intervals
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Practice problem
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Problem
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α→ t
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Prediction intervals
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Principles for deriving CIs

If X1,X2, . . . ,Xn is a random sample from a distribution f (x , θ),
then

Find a random variable Y = h(X1,X2, . . . ,Xn; θ) such that
the probability distribution of Y does not depend on θ or on
any other unknown parameters.

Find constants a, b such that

P [a < h(X1,X2, . . . ,Xn; θ) < b] = 0.95

Manipulate these inequalities to isolate θ

P [`(X1,X2, . . . ,Xn) < θ < u(X1,X2, . . . ,Xn)] = 0.95
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Settings

We have available a random sample X1,X2, . . . ,Xn from a
normal population distribution

We wish to predict the value of Xn+1, a single future
observation.

This is a much more difficult problem than the problem of
estimating µ

When n→∞, X̄ → µ

Even when we know µ, Xn+1 is still random
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Settings

A natural estimate of Xn+1 is

X̄ =
X1 + . . .+ Xn

n

Question: What is the uncertainty of this estimate?
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Problem

Let X1,X2, . . . ,Xn be a sample from a normal population
distribution N (µ, σ) and Xn+1 be an independent sample from the
same distribution.

Compute E [X̄ − Xn+1] in terms of µ, σ, n

Compute Var [X̄ − Xn+1] in terms of µ, σ, n

What is the distribution of X̄ − Xn+1?
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Principle

If σ is known
X̄ − Xn+1

σ
√

1 + 1
n

follows the standard normal distribution N (0, 1).
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Principle
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Prediction intervals
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Practice problem
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Problem
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α→ t
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Problem
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Φ(z)
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Section 6.4: Distributions based on a normal random sample

The Chi-squared distribution

The t distribution

The F Distribution
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Chi-squared distribution

The pdf of a Chi-squared distribution with degree of freedom ν,
denoted by χ2

ν , is
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Why is Chi-squared useful?

Proposition

If Z has standard normal distribution Z(0, 1) and X = Z 2, then X
has Chi-squared distribution with 1 degree of freedom, i.e. X ∼ χ2

1

distribution.

Proposition

If X1 ∼ χ2
ν1 , X2 ∼ χ2

ν2 and they are independent, then

X1 + X2 ∼ χ2
ν1+ν2
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Why is Chi-squared useful?

Proposition

If Z1,Z2, . . . ,Zn are independent and each has the standard normal
distribution, then

Z 2
1 + Z 2

2 + . . .+ Z 2
n ∼ χ2

n
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Why is Chi-squared useful?

If X1,X2, . . . ,Xn is a random sample from the normal distribution
N (µ, σ2). Note that

What is the distribution of the LHS?

What is the distribution of the second term on the RHS?

What is the distribution of

(n − 1)
S2

σ2
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Why is Chi-squared useful?

If X1,X2, . . . ,Xn is a random sample from the normal distribution
N (µ, σ2), then

(n − 1)
S2

σ2
∼ χ2

n−1
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t distributions

Let Z be a standard normal rv and let X be a χ2
ν rv independent

of Z . Then the t distribution with degrees of freedom ν is defined
to be the distribution of the ratio

T =
Z√
X/ν
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t distributions

When X̄ is the mean of a random sample of size n from a normal
distribution with mean µ, the rv

X̄ − µ
S/
√
n

has the t distribution with n − 1 degree of freedom (df).
Hint:

T =
Z√
X/ν

(n − 1)
S2

σ2
∼ χ2

n−1

and
X̄ − µ
S/
√
n

=
X̄ − µ
σ/
√
n
· 1√

(n − 1)S
2

σ2 /(n − 1)
.
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F distributions

Let X1 and X2 be independent chi-squared random variables with
ν1 and ν2 degrees of freedom, respectively. The Fν1,ν2 distribution
with ν1 numerator degrees of freedom and ν2 denominator degrees
of freedom is defined to be the distribution of the ratio

X1/ν1
X2/ν2
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CIs for variance and standard deviation
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Why is Chi-squared useful?

If X1,X2, . . . ,Xn is a random sample from the normal distribution
N (µ, σ2), then

(n − 1)
S2

σ2
∼ χ2

n−1
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Important: Chi-squared distribution are not symmetric
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CIs for standard deviation

We have

Play around with these inequalities:
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CIs for standard deviation
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